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I.  INRTODCUCTION 

This Idea Award (PC040282/W81XWH05-1-0041), entitled “Prostate Dose Escalation by Innovative 

Inverse Planning-Driven IMRT”) was awarded to the principal investigator (PI) for the period of Nov 1, 

2004—Oct. 31, 2007. Due to a delay in having a postdoctoral fellow with right training background on 

board during the course of the project, an one year no-cost-extension was filed and granted by DOD. Thus 

the final completion date of the project is Oct. 31, 2008. This is the final report of the project.  

The goal of this project is to improve current prostate IMRT by establishing a novel inverse planning 

framework. Under the generous support from the U.S. Army Medical Research and Materiel Command, the 

PI’s research team has made significant progress toward the general goal of the project and contributed greatly 

to prostate cancer research. A number of highly significant conference abstracts and refereed papers have been 

resulted from the support. The preliminary data obtained under the support of the grant has also enabled the PI 

to start new research initiatives. In this report, the research activities and accomplishments of the PI are 

highlighted. 

 
II.  RESEARCH AND ACCOMPLISHMENTS 

We have continued to improve the prostate IMRT dose optimization techniques and made significant 

progress in treatment planning for image guided prostate radiation therapy and related issues. We proposed, 

for the first time, a total-variation regularization (TVR) method for improved IMRT inverse planning1 

(Appendix 10). An emerging signal processing technique, compressed sensing, has been applied for IMRT 

inverse planning2 (Appendix 12). A voxel-specific penalty scheme with TVR framework has been investigated 

(Appendix 11). The new planning scheme has been evaluated using a large number of archived prostate cases 

and the results are very promising. These works lay foundation for the next generation of inverse planning 

techniques and may significantly impact the clinical prostate IMRT. In addition, we developed an effective 

inverse planning algorithm for intensity modulated arc therapy (IMAT)3-6 with incorporation of beam eye’s 

view dosimetrics7, which improves the computational speed by an order of magnitude as compared with the 

existing dose optimization technique while improving the final dose distribution. The study should have 

widespread impact on clinical IMRT, IMAT and image guided radiation therapy (IGRT) in the future. 

 

Using TVR for IMRT inverse planning with field specific numbers of segments: Traditional inverse 

planning algorithms for step-and-shoot IMRT (SS-IMRT) divide the beam's eye view of the planning target 

volume (PTV) into small beamlets8, 9. The beamlet intensities are optimized as a linear least square solution, 

and a leaf sequencing algorithm is then applied on the resultant beam intensity map to generate a set of 

deliverable beam segments10-14. Since the physical constraints of the MLC are not included, these algorithms 
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Fig. 2 Fluence maps with without and with the TVR. The data 
shown in the right is from the 2nd field of Fig. 1 

Fig. 3 Histogram of the beam intensities of Fig. 2. 

Fig. 1 Fluence maps obtained using the TRV method 
for a 5-field prostate IMRT case. In this prostate 
IMRT, five fields were used at angles of 35, 110, 180, 
250 and 325 degrees. 

usually result in a treatment plan with a large number of beam apertures. DAO algorithms have been proposed 

to reduce the number of segments including naturally the MLC hardware constraints in the optimization15, 16. 

However, because the delivered dose depends on the aperture shapes non-linearly and the optimization 

problem is non-convex, random search algorithms, such as simulated annealing, are commonly employed. The 

computation is intensive and requires tuning of multiple algorithm parameters in the searching and cooling 

schedules. Moreover, the number of segments for each field needs to be determined before the calculation, 

which reduces the degree of freedom of the decision variable space and compromises the optimality of the 

final solution. We have recently proposed an efficient TVR-based inverse planning algorithm1. Instead of 

directly applying the physical constraints of the apertures, we include a TVR term in the least square 

optimization to encourage the computed field intensity maps close to be deliverable using a small number of 

segments. The TVR term calculates the sum of absolute values of the derivatives of the final fluences and 

force the optimized beam intensity close to be piece-wise constant. This removes the need for the aperture 

constraint in the DAO approach. The algorithm is able to optimize the number of segments for each field 

based on the modulation complexity. The proposed algorithm requires only a simple adaptation of the 

traditional beamlet-based optimization. We have also successfully reformulated the TRV optimization as a 

quadratic programming problem. The problem is then efficiently solved using the standard quadratic 

programming. Although not exactly equivalent, the TVR in the optimization implies the aperture constraint 

on the intensity maps. The resulting optimized 

intensity maps are more readily achievable 

using apertures, at the price of slightly degraded 
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Fig. 4 DVHs of the prostate IMRT plan obtained using the TVR approach 
(left). The PTV DVH obtained using beamlet-based optimization and the TVR 
approach with Nt is shown in the right (note the x-axis stars from 74 Gy).  

dose distribution as compared to that of the beamlet based plan, but much better than that of DAO for the 

same number of total segments. 
  

Fig. 1 shows the actual fluence maps obtained using the TVR algorithm for the prostate patient. The 

resultant plan using our method has different levels of modulation for different fields. It is seen that the 

TVR greatly reduces the complexity 

of the intensity map, and the resulting 

intensity map is close to a piece-wise 

constant function. Fig. 2 shows the 

optimized beamlet intensity of the 2nd 

field with and without the TVR. This 

effect is better illustrated in Fig. 3, 

which plots the histograms of Fig. 2. 

The resulting intensity map is close 

to a piece-wise constant function. 

The left of Fig. 4 shows the DVHs when Nt=35. The plans are normalized such that 95% of the PTV volume 

receives 100% prescribed dose (78Gy). The right of Fig. 4 shows the PTV DVHs when different Nt’s are 

used. As Nt increases, PTV coverage improves. The result using a beamlet-based optimization is also 

included in the plot. It is seen that, with a relatively small Nt (say Nt=35, corresponding to an average of 7 

segments per beam), our algorithm achieves a highly conformal dose distribution, which is comparable to 

the optimal result with an extremely large number of segments. The resultant plan using our method has 

different levels of modulation for different fields. In this prostate case, the numbers of apertures are 5, 6, 11, 

10, and 3, for fields 1 to 5. Using a commercial treatment planning system (Eclipse, Varian Medical 

Systems), the numbers of apertures for different fields are 11, 12, 13, 12 and 13, respectively. Our algorithm 

reduces the total number of apertures from 61 to 35. In another example of 7-field IMRT, the optimal results 

were achieved using very few numbers of apertures, 1, 4, 3, 4, 4, 8, and 4 for fields 1 to 7. Using the Eclipse 

system, the numbers of apertures for different fields are 17, 16, 13 15, 18, 14, and 14, respectively. Our 

algorithm reduces the total number of apertures from 107 to 28. It is important to let the algorithm to 

optimize the number of apertures for each field based on the field specific modulation complexity. 

 The proposed algorithm suppresses the dispensable intensity modulation of fluence maps using TVR. 

The number of delivered segments is significantly reduced without compromising the conformity of the 

dose distribution. Furthermore, our algorithm optimizes the individual number of apertures for different fields, 

based on the complexity of the required modulation.  
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Figure 5 The calculated Pareto frontier 
of the prostate plan. The derived number
of segments (Nt) corresponding to each 
data point is marked in the plot. 

Compressed sensing technique as applied to IMRT inverse planning: In IMRT, the treatment plan is 

selected from a large pool of physically feasible solutions by optimization of an objective function. The 

solution depends on the choice of objective function and constraints applied to the optimization. An 

important characteristic that has not been utilized is that the IMRT solution space is highly degenerated in 

the sense that there are usually a large number of IMRT plans for the same prescription17. While these plans 

yield similar dose distributions satisfying the prescription and 

constraints, the fluence maps of the plans can be dramatically 

different. Therefore, it is possible to stipulate constraints in the 

search of the optimal beamlet intensity such that the resultant 

number of segments is greatly reduced while the dose distribution is 

not severely deteriorated. Encouraged by the success of TVR 

method as described above, we reformulated the algorithm in terms 

of the emerging compressed sensing theory in signal processing2. 

Since an actual fluence map with a small number of segments must 

be piece-wise constant and its derivative is sparse, we propose a compressed sensing method to encourage a 

sparse solution in search of the optimal fluence map and therefore to reduce the total number of segments. 

The treatment planning is modeled as multi-objective optimization problem with one objective on the dose 

performance and the other on the sparsity of the solution. A Pareto frontier is calculated, and the achieved 

dose distributions associated with the Pareto efficient points are evaluated using clinical acceptance criteria. 

The clinically acceptable dose distribution with the smallest number of segments is chosen as the final 

solution. The method is demonstrated in the application of fixed-gantry IMRT on a prostate patient and our 

result shows that the total number of segments is greatly reduced while a satisfactory dose distribution is 

still achieved. In figure 5 we show the Pareto front plot for a prostate case. As compared to our early TRV 

work, a practical advantage here is that it effectively eliminate the need for the empirical determination of 

the TV parameter and makes it possible to obtain truly optimal solution. The method can also be applied in 

other applications, such as IMAT.  

Voxel specific penalty scheme for TRV-based inverse planning: The above TRV-based inverse planning 

has also been improved by incorporating voxel-specific penalty. In the existing inverse planning algorithms, 

a structure specific weighting factor and prescription are usually assigned to each structure (target or 

sensitive structures)17, 18. This type of penalty scheme limits the solution space and often leads to sub-

optimal plan (to give a comprehensive example, one can imagine the consequence when two or more 

structures in a system are restricted to take a single importance). To be able to assess more candidate plans, 

it is necessary to establish a voxel dependent penalty scheme in which the penalty at a voxel depends not 
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only on the dose discrepancy but also on the physical and clinical requirements on the point. A natural way 

to achieve this is to lift the restriction of uniform prescription for a structure so that the prescription at a 

voxel can be adjusted independently with the goal of finding the optimal final dose distribution. The voxel-

specific prescription is simply a set of guidance parameters that help the optimizer to find the optimal 

solution. We have recently established a framework for this type of TRV-based inverse planning scheme 

and the manuscript is in preparation (a draft is attached in the Appendix 11). This work further enhances our 

initiatives on TRV and compressed sensing based IMRT inverse planning and provides an additional means 

to ensure adequate dose coverage of the prostate while sparing the rectum and bladder.  

 

III. KEY RESEARCH ACCOMPLISHMENTS 
 

• Proposed a novel total-variation regularization based inverse planning technique for prostate IMRT. 

• Applied compressed sensing concept to IMRT and IMAT inverse planning and established a multi-

objective optimization framework. 

• Developed a voxel-specific penalty scheme for TRV-based inverse planning. 

• Established a cine-EPID image retrospective dose reconstruction in IMRT dose delivery for adaptive 

planning and IMRT dose verification.  

 
IV.  REPORTABLE OUTCOMES 

The following is a list of publications resulted from the grant support in the last funding period. 
 
Refereed publications: 
1. Lee L, Le Q, Xing L: Retrospective IMRT dose reconstruction based on cone-beam CT and MLC log-file. 

International Journal of Radiation Oncology, Biology and Physics, 70: 634-644, 2008. 
2. Chao M, Schreibamnn E, Li T, Xing L, Automated contour mapping with a regional deformable model, 

International Journal of Radiation Oncology, Biology and Physics, 70: 599-608, 2008. 
3. Thornydy B, Koong A, Xing L, Reducing respiratory motion artifacts in radionuclide imaging through retrospective 

stacking:  A simulation study, Linear Algebra and its Applications, 428: 1325-1344, 2008.  
4. Xing L, Quality assuraqnce of PET/CT for radiation therapy, International Journal of Radiation Oncology, Biology 

and Physics 71, ,38-41, 2008. 
5. Mao W, Lee L, Xing L, Design of multi-purpose phantom and automated software analysis tool for quality 

assurance of onboard kV/MV imaging system, Medical Physics 35, 1497-1506, 2008. 
6. Schreibmann E., Thorndyke B, Xing L, 4D-4D Image registration for image guided radiation therapy (IGRT), 

International Journal of Radiation Oncology, Biology and Physics 71, 578-586, 2008. - highlighted article of the 
issue. 

7. Wiersma R. and Xing L, Real-time monitoring of implanted fiducials using onboard kV and treatment MV beams, 
Medical Physics 35, 1191-1198, 2008. 

8. Mao W, Wiersma R, Xing L, Fast fiducial detection algorithm for onboard MV and kV imaging systems, Medical 
Physics 35, 1942-1949, 2008. 

9. Xie Y, Djajaputra D, King C, Hossain S, Ma L, Xing L: Intrafraction motion of prostate in hypofractionated 
radiation therapy. International Journal of Radiation Oncology, Biology and Physics 72, 236-246, 2008. 

10. Xie Y, Chao M, Lee P, Xing L: Feature-based rectal contour propagation from planning CT to cone beam CT, 
Medical Physics 35, 4450-4459, 2008. 

11. Wang J, Li T, Liang Z, Xing L, Dose reduction in kV cone beam CT for radiation therapy, Physics in Medicine and 
Biology 53, 2897-2909, 2008. 
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12. Chao M, Schreibamnn E, Li T, Xing L, Contour propagation from planning CT to cone beam CT (CBCT), Physics 
in Medicine and Biology 53, 4533-4542, 2008.  

13. Mao W, Riaz N, Lee L, Wiersma R, Xing L, A fiducial detection algorithm for real-time image guided IMRT based 
on simultaneous MV and kV imaging, Medical Physics 35, 3554-3564, 2008.  

14. Paquin D, Levy D, Xing L, Hybrid multistage landmark and deformable image registration, Medical Physics, in 
press, 2008.  

15. Wang C, Chao M, Lee L., Xing L, MRI-based Treatment Planning with Electron Density Information Mapped from 
CT Images: A Preliminary Study, Technology in Cancer Research Treatment 7, 341-348, 2008. 

16. Lee L, Mao W, Xing L, The use of EPID-measured leaf sequence files for IMRT dose reconstruction in adaptive 
radiation therapy, Medical Physics 35, 5019-5029, 2008.  

17. Wang J, Li T, Xing L: Low-Dose CBCT Imaging for External-Beam Radiotherapy. Medical Physics, in press, 2008.  
18. Zhu L, Lee L, Ma Y, Ye Y, Mazzeo R, and Xing L, Using total-variation regularization for inverse planning with 

field specific numbers of segments, Physics in Medicine and Biology 53,  6653–6672, 2008. 
19. Zhu L, Wang J, Xing L, Noise Suppression in Scatter Correction for Cone-Beam CT, Medical Physics, 

conditionally accepted, 2008. 
20. Wang J, Li T, Xing L: Dose reduction in fluoroscopic imaging. Medical Physics, accepted, 2008. 
21. Xie Y, Chao M, Xing L: Modeling the Shear Movement of the Lungs During Respiration Using Tissue Feature-

Based Image Registration, International Journal of Radiation Oncology, Biology and Physics, conditionally 
accepted, 2008.  

22. Riaz N, Shanker P, Gudmundsson O, Wiersrma R, Mao W, Widrow B, and Xing L, Predicting respiratory tumor 
motion with Multi-dimensional Adaptive Filters and Support Vector Regression, International Journal of 
Radiation Oncology, Biology, Physics, conditionally accepted, 2008.  

23. Liu W, Wiersma R, Mao W, Luxton G, and Xing L, Real-time 3D internal marker tracking during arc radiotherapy 
by use of combined MV-kV imaging, Physics in Medicine and Biology 53, 7197-7213, 2008. 

24. Zhu L, and Xing L, Search for IMRT solutions with piece-wise constant fluence maps using compressed sensing 
technique, Medical Physics, submitted, 2008.  

25. Ma Y, Park S, Suh T, Keall P, Xing L, Four-dimensional inverse planning with inclusion of implanted fiducials in 
IMRT segmented fields, International Journal of Radiation Oncology, Biology and Physics, submitted, 2008. 

26. Zhu L, Wang J, Xing L, Scatter correction in cone beam CT, submitted to Medical Physics, 2008. 
27. Ma Y, Lee L, Xing L, Inverse planning for 4D modulated arc therapy, Medical Physics, submitted, 2008. 
28. Ma Y, Xing L, Incorporation of prior knowledge into treatment planning of modulated arc therapy, International 

Journal of Radiation Oncology, Biology, Physics, submitted, 2008. 
 
Book and Book Chapters  
1. Keall P and Xing L, Image Guided and Adaptive Therapy, The Textbook of Radiation Oncology, Phillips T and 

Leibel S (editors), Saunders, 2008. 
2. Xia P, Almos H, Xing L, Intensity Modulated Radiation Therapy, The Textbook of Radiation Oncology, Phillips T 

and Leibel S (editors), Saunders, 2008. 
3. Xing L, Lee L, Timmerman R, Image Guided Adaptive Radiation Therapy, in Image Guided and Adaptive 

Therapy, Timmerman R. and Xing L (editors), Image Guided and Adaptive Radiation Therapy, Lippincott, 
Williams, and Wilkins, Baltimore, MD, in processing (to appear in 2009). 

4. Xing L, Image Guided Intensity Modulated Radiation Therapy, in Mathematical Methods in Biomedical Imaging 
and IMRT, Censor Y, Jiang M, Louis A.K (Editors), Springer-Verlag, 2008. 

5. Wiersma R, Riaz N, Xing L, Real-Time Guided Image Guided Intensity Modulated Radiation Therapy, in 
Biomedical Imaging and IMRT Inverse Planning, Jiang M, Censor Y, Wang G (Editors), Medical Physics 
Publishing, 2009. 

 
Conference abstract 
1. W Mao, N Riaz, K Lee, R Wiersma, C King, A Hsu, G Luxton, L Xing, Using Treatment Beam Imaging to 

Monitor Prostate Motion In Near Real-Time On a Conventional LINAC, 2008 Annual Meeting of AAPM, 
Houston, TX, July, 2008. 

2. W Liu, W Mao, R Wiersma, G Luxton, N Riaz, L Xing, Nearly Real-Time Tumor-Position Monitoring During Arc 
Therapy with Combined MV and KV Imaging, 2008 Annual Meeting of AAPM, Houston, TX, July, 2008. 

3. N Riaz, R Wiersma, W Mao, L Xing, Prediction of Fiducial Motion in Respiratory Tumors for Image-Guided 
Radiotherapy, 2008 Annual Meeting of AAPM, Houston, TX, July, 2008. 
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4. L Zhu, L Xing, Scatter Correction for Cone-Beam CT in Radiation Therapy, 2008 Annual Meeting of AAPM, 
Houston, TX, July, 2008. 

5. Y Xie, M Chao, L Xing,  4D CT Image-Based Modeling the Deformation and Sliding Motion of Lungs, 2008 
Annual Meeting of AAPM, Houston, TX, July, 2008. 

6. Y Xie, D Djajaputra, C King, S Hossain, L Ma, L Xing, Intrafraction Motion of Prostate in Cyberknife 
Hypofractionated Radiotherapy, 2008 Annual Meeting of AAPM, Houston, TX, July, 2008. 

7. N Riaz, W Mao, R Wiersma, L Xing, Improving Tracking of Implanted Radio-Opaque Markers On MV and KV 
Imaging with Techniques From Computer Vision and Machine Learning, 2008 Annual Meeting of AAPM, 
Houston, TX, July, 2008. 

8. M Chao, Y Xie, L Xing, Image-Based Modeling of Tumor Shrinkage Or Growth: Towards Adaptive Radiation 
Therapy of Head-And-Neck Cancer, 2008 Annual Meeting of AAPM, Houston, TX, July, 2008. 

9. J Wang, T Li, J Liang, L Xing Dose Reduction in Kilovotage Cone-Beam Computed Tomography for Radiation 
Therapy, 2008 Annual Meeting of AAPM, Houston, TX, July, 2008. 

10. W Mao, N Riaz, K Lee, R Wiersma, L Xing Tracking Multiple Moving Fiducials During Treatment Based On 
Simultaneous Onboard KV and Treatment MV Imaging, 2008 Annual Meeting of AAPM, Houston, TX, July, 
2008. 

11. K Lee , W Mao, L Xing, The Use of EPID-Measured Leaf Sequence Files and On-Treatment Cone-Beam CT for 
Dose Reconstruction of IMRT Delivery, , 2008 Annual Meeting of AAPM, Houston, TX, July, 2008. 

12. L Xing, IMRT Dose Painting Guided by Biological and Physiological Imaging, invited talk in 2008 Annual 
Meeting of AAPM, Houston, TX, July, 2008. 

13. L Xing, 4D Imaging for Radiation Therapy, invited talk in 2008 Annual Meeting of RSNA, Chicago, IL, Dec, 
2008. 

14. Y Xie, D Djajaputra, C. R. King, S. Hossain, L. Ma, L Xing,  Intrafractional Motion of the Prostate During 
Hypofractionated Radiotherapy, Annual meeting of 2008 ASTRO, Boston, MA, Sept, 2008.  

15. J. Wang, T. Li, L. Xing, Low-dose CBCT Imaging for External Beam Radiotherapy, Annual meeting of 2008 
ASTRO, Boston, MA, Sept, 2008.  

16. N. Riaz, P. Agram, O. Gudmundsson, R. Wiersma, W. Mao, L. Xing, Predicting Fiducial Motion in Respiratory 
Tumors for Image Guided Radiotherapy, Annual meeting of 2008 ASTRO, Boston, MA, Sept, 2008.  

17. R.D. Wiersma, W. Mao, L. Xing, Real-time Tracking of Implanted Fiducial Markers using Combined Onboard kV 
Fluoroscopy and MV EPID Imaging, Annual meeting of 2008 ASTRO, Boston, MA, Sept, 2008.  

 
US Patent 
A disclosure entitled “Radiation therapy inverse treatment planning using a regularization of sparse 
segments” has been filed to the Office of Technology Licensing (OTL) and a patent application will be filed 
in a few months (Stanford Docket No. S08-277). 
 
 

IV. CONCLUSIONS 

In the past funding year, the PI group has contributed greatly to advance prostate radiation therapy 

techniques. A few important milestones have been achieved toward the goal of the project. These include: (i) 

Proposed a novel total-variation regularization based inverse planning technique for prostate IMRT; (ii) 

Applied compressed sensing concept to IMRT and IMAT inverse planning and established a multi-objective 

optimization framework; (iii) Developed a voxel-specific penalty scheme for IMRT inverse planning; (iv) 

Established a cine-EPID image retrospective dose reconstruction in IMRT dose delivery for adaptive planning 

and IMRT dose verification. We anticipate that these works will lead to widespread impact in clinical prostate 

IMRT. 
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RETROSPECTIVE IMRT DOSE RECONSTRUCTION BASED ON
CONE-BEAM CT AND MLC LOG-FILE

LOUIS LEE, PH.D., QUYNH-THU LE, M.D., AND LEI XING, PH.D.

Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA

Purpose: Head-and-neck (HN) cone-beam computed tomography (CBCT) can be exploited to probe the IMRT
dose delivered to a patient taking into account the interfraction anatomic variation and any potential inaccuracy
in the IMRT delivery. The aim of this work is to reconstruct the intensity-modulated radiation therapy dose
delivered to an HN patient using the CBCT and multileaf collimator (MLC) log-files.
Methods and Materials: A cylindrical CT phantom was used for calibrating the electron density and validating the
procedures of the dose reconstruction. Five HN patients were chosen, and for each patient, CBCTs were performed
on three separate fractions spaced every 2 weeks starting from the first fraction. The respective MLC log-files were
retrieved and converted into fluence maps. The dose was then reconstructed on the corresponding CBCT with the
regenerated fluence maps. The reconstructed dose distribution, dosimetric endpoints, and DVHs were compared
with that of the treatment plan.
Results: Phantom study showed that HN CBCT can be directly used for dose reconstruction. For most treatment
sessions, the CBCT-based dose reconstructions yielded DVHs of the targets close (within 3%) to that of the original
treatment plans. However, dosimetric changes (within 10%) due to anatomic variations caused by setup inaccur-
acy, organ deformation, tumour shrinkage, or weight loss (or a combination of these) were observed for the critical
organs.
Conclusions: The methodology we established affords an objective dosimetric basis for the clinical decision on
whether a replanning is necessary during the course of treatment and provides a valuable platform for adaptive
therapy in future. � 2008 Elsevier Inc.

Cone-beam CT, Head and neck IMRT, MLC log-file, Dose reconstruction, Adaptive radiation therapy.
INTRODUCTION

Two implicit assumptions are made in the current multileaf

collimator (MLC)-based intensity modulated radiotherapy

(IMRT) process. First, the geometric sizes, shapes, and

locations of the targets and organs (internal anatomy) and

the geometric topography of the patient are the same as at

the time of computed tomography (CT) simulation through-

out the treatment course. Second, the delivered fluence maps

are the same as the planned ones and delivered by the MLC in

an idealized manner. In reality, neither of these assumptions

is guaranteed in clinical situations.

Many patients, especially those with head and neck (HN)

cancers who undergo fractionated RT course, have marked

geometric changes in their internal anatomy and topography

during the treatment course, which are attributable to organ

deformation, tumor shrinkage, weight loss or a combination
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of these (1, 2). These geometric changes might cause undesir-

able underdosage of the targets and potential overdosage of

the critical organs in the vicinity of the targets and lead to

a suboptimal treatment outcome. This issue poses a particular

concern in HN IMRT cases because of the steep dose gradi-

ent that often exists between the boundary of the target and

critical organs in an IMRT plan. The use of the three-dimen-

sional (3D) patient model derived from a single planning CT

(pCT) set to guide the fractionated RT course is a major hur-

dle to further advancing the radiation therapy (3). Recently,

many in-room imaging modalities including CT-on-rail (4),

kilovoltage-CBCT (5, 6), megavoltage cone-beam CT (7),

and tomotherapy system (8) have been developed to monitor

the geometric changes on a temporal basis. These new imag-

ing modalities are primarily designed to verify and correct the

patient’s setup in a 3D space with respect to the pCT on the

basis of bony landmarks, as well as soft tissue structures,
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before dose delivery. In principle, the CBCT can be further

exploited to derive a 3D patient model for dose reconstruc-

tion to reflect the dosimetric impact resulting from the resid-

ual setup errors and geometric changes occurring over time.

Feasibility studies have been carried out by several re-

search groups to reconstruct the IMRT dose distribution

using CBCT and the planned fluence maps from the treat-

ment planning system (TPS) (9–11). This maneuver is based

on the second assumption mentioned earlier that the planned

fluence maps can be faithfully realized by the delivery system

(11). However, in a MLC-based IMRT using the step-and-

shoot method, there may be errors associated with the control

of leaf motion and fractional monitor unit (MU) delivery such

as overshoot, undershoot segmental MU, dropped segments,

and beam delivery during leaf motion (12–15). These factors

might affect the dose delivery and result in a delivered

fluence map different from the planned one. A more prag-

matic approach in reconstructing the delivered dose is to

use the fluence maps actually delivered for the treatment;

therefore, we propose retrieving the MLC log-file that

records the leaf position of each individual leaf and the frac-

tional MU status during the delivery of IMRT from the MLC

workstation and deriving the delivered fluence map from it.

The objective of this study is twofold: (1) to establish

a methodology and procedures to reconstruct the dose deliv-

ered to a patient on a series of kV-CBCTs taken during a treat-

ment course using the delivered fluence maps derived from

the corresponding MLC log-files and (2) to study the poten-

tial dosimetric impact on the intended treatment plan taking

into account the patient’s geometric changes over time, resid-

ual setup errors, and the inherent delivery errors associated

with the MLC. This work can serve as a platform for imple-

menting a workflow in reconstructing the IMRT delivered

dose and providing the necessary dosimetric information

needed to modify the treatment plan, if indicated, on the basis

of the accumulated dose given to the patient.

METHODS AND MATERIALS

CBCT image acquisition
The CBCT images in this study were acquired by the onboard

imager (OBI) integrated in a Trilogy medical linear accelerator (Var-

ian Medical Systems, Palo Alto, CA). The OBI system is mounted

on the gantry of the linear accelerator perpendicular to the beam

axis of the MV beam by robotic arms. The OBI system consists of

a kV X-ray tube assembly at one end and an amorphous silicon

flat-panel image receptor (39.7 cm � 29.8 cm) (Varian 4030CB

flat panel) facing the X-ray tube at the other end in the full-extended

configuration. The focus of the X-ray tube and the center of the

image receptor are at 100 cm and 50 cm from the isocenter, respec-

tively, resulting in a source-to-imager distance of 150 cm. The OBI

isocenter coincides with the MV treatment isocenter within � 1.5

mm and is routinely checked in the weekly quality assurance proce-

dure (16). The CBCT can be acquired in two modes, the ‘‘half-fan’’

mode and ‘‘full-fan’’ mode. The half-fan mode is designed to

increase the field-of-view (FOV) beyond 24 cm and was used exclu-

sively in this study. In the half-fan mode, the image receptor is dis-

placed laterally by 14.8 cm, and the blades of the X-ray tube are

offset to cover the detector area. A half-bowtie filter is used in this
mode. A half-fan projection image is acquired for each acquirement

angle for the 364� gantry rotation in about 60 s, resulting in a total of

640–700 projections (16). Only part of the object is viewed in one

half-fan projection; the other part of the object is viewed in the

half-fan projection from the opposite position. The entire object is

reconstructed by using the projections acquired 180� apart. The

FOV and longitudinal coverage in this mode are 45 cm in diameter

and 15 cm in length, respectively. A total of 640 projections are

acquired and reconstructed into CBCT images of 512� 512 matrix.

Electron density calibration
Electron density calibration was performed by scanning a phan-

tom with inserts of known relative electron densities with respect

to water (rw
e ) and calibrating the rw

e against the Hounsfield units

(HU) of the inserts. A 20-cm cylindrical CT phantom, Catphan-

600 with CTP404 module (Phantom Laboratory, NY), was used

for the electron density calibration for the pCT (GE Discovery-ST

PET/CT scanner, Milwaukee, WI) and CBCT. This phantom was

chosen because it has a size and shape comparable to a patient’s

HN region. Designated scanning parameters for HN patients were

chosen for the pCT and similar scanning parameters were applied

as far as possible for the CBCT; the slice thickness used was 2.5

mm. The half-fan CBCT mode (half-bowtie mounted) was used to

give a FOV of 45 cm, comparable to that of 45–50 cm used in

pCT to include the lower neck region. Both CT sets had a pixel

size of about 1 mm in a 512 � 512 matrix image. The techniques

for the CBCT used were 125 kVp, 80 mA, and 25-ms pulse, which

are precalibrated for clinical use. The HUs of the inserts for both the

pCT and CBCT were measured from the acquired images and plot-

ted against the known rw
e . The vertical and horizontal HU profiles of

the same images were also plotted and compared. The temporal

CBCT HU stability has been investigated by our group, and there

is no significant fluctuation observed over a period of 8 weeks (10).

MLC log-file retrieval and processing
The Trilogy is equipped with the Millennium 120-leaf MLC (Var-

ian Medical Systems) capable of IMRT delivery. During a step-and-

shoot IMRT delivery, the MLC workstation logs the position of each

individual leaf and the fractional MUs delivered every 50 ms; it also

produces two separate log-files for each leaf bank (A and B sides). A

split IMRT field results in four such MLC log-files. These automat-

ically generated MLC log-files have been validated to represent

accurately the actual IMRT delivery (17, 18). For this study, the

MLC log-files were retrieved from the MLC workstation after the

treatment session in which the CBCT was performed; the leaf posi-

tions and delivered fractional MUs were extracted and converted

to leaf sequence files by software developed in-house, written in

Visual Basic 6.0 code (Microsoft, Bellevue, WA). The leaf sequence

files were then imported back into the TPS to regenerate the deliv-

ered fluence maps, which were used in the dose reconstruction on

the CBCT-derived 3D patient model (Fig. 1). To access the practi-

cability of the retrieval and conversion procedures, the MLC log-

files of a HN IMRT patient were retrieved, and the subsequently

regenerated fluence maps were attached to the original treatment

fields in the IMRT plan. The dose was reconstructed using the orig-

inal set of pCT; the resultant dose distribution and dose volume his-

tograms (DVH) of the target and organs were then compared with

those from the original plan to see the discrepancy due solely to

the difference in the fluence maps used.

Phantom study
Planning CT and CBCT were acquired for the Catphan-600 phan-

tom using the techniques previously described. Both sets of images
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Fig. 1. The workflow from the retrieval of the multileaf collimator (MLC) log-file to the regeneration of the delivered flu-
ence map and dose reconstruction. MU = monitor unit; TPS = treatment planning system.
were imported into the Eclipse TPS (Varian Medical Systems) for

feasibility study. A hypothetical identical target in a shape of cuboid

(4� 4� 2 cm) was created in the center of the phantom for the two

image sets. An isocentric plan with two orthogonal 6-MV fields

(Varian scale 180� and 90� gantry angle) each measuring 10 � 10

cm was applied to the center of the phantom in each image set.

The Anisotrophic Analytical Algorithm (AAA) implemented in

the Eclipse TPS was adopted for dose calculation. The electron cal-

ibration curve of the pCT, which had been commissioned for the use

of dose calculation in TPS, was applied to both image sets for dose

calculation; this is based on the findings from the electron density

calibration scans performed on the pCT and CBCT earlier. A five-

field IMRT plan from an HN patient was also applied to two image

sets of the phantom to validate further the use of CBCT for dose cal-

culation. The resultant dose distributions, orthogonal dose profiles,

and DVHs of the hypothetical target from the pCT- and

CBCT-based calculations were compared.

Patient CBCT scheduling and acquisition
Five HN IMRT patients were chosen for this work. The patient

was setup under the guidance of kV orthogonal planar imaging rou-

tinely using the OBI. The CBCT was then acquired using the tech-

niques previously described. There was no attempt to use the CBCT

for 3D-3D setup correction because 3D-3D setup verification has

not yet been adopted as a routine clinical procedure at our clinic. Be-

cause of the limited coverage of the CBCT in the longitudinal direc-

tion, two sets of CBCT 10 cm apart in this direction were taken for

each patient. The two CBCT image sets were merged together
before they were imported into the TPS. Three CBCTs at 2-week

intervals starting from the first or second fraction in a 30-fraction

treatment course (Fig. 2) were taken for the patients. There is usually

a 2-week gap from the pCT to the first treatment; the first CBCT not

only serves as a starting time point to see the temporal geometric

changes but also shows the geometric changes that might have

occurred during the 2-week gap before the treatment commences.

The number of CBCTs taken and the time interval between them

are a compromise based on the consideration of imparted CBCT

dose, workload, and the progress of anatomic changes that manifest

on the CBCT. The acquired CBCTs and the retrospective dose

reconstructions were used only for research purposes and not for

altering the original treatment or clinical practice.

Procedures for dose reconstruction
After each treatment, the MLC log-files and the CBCT image sets

were retrieved. The merged HN CBCT was imported into the

Eclipse TPS; a 3D patient model was generated from the CBCT

and fused to the pCT 3D patient model using a rigid-body image reg-

istration technique based on mutual information of the whole CT

volumes. This image registration was used only for mapping the tar-

gets and organ contours from the pCT image set onto the CBCT

image set. These initial mapped contours were edited by the same

physician who did the contouring for the original plan, if necessary,

to adapt to changes in the patient’s anatomy due to tumour shrink-

age, organ deformation, or weight loss. After the CBCT image set

had been finalized with the corrected contours, it was decoupled

from the registration to retain its own geometric status, including
-2

1 2010 30

0 42 6 week

fraction

pCT CBCT1 CBCT2 CBCT3

Fig. 2. Timeline showing the scheduling of the cone-beam computed tomography (CBCT) and the time of planning
computed tomography (pCT).
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Fig. 3. The electron density calibration curves for the planning computed tomography (pCT) and cone-beam computed
tomography (CBCT).
the residual setup errors for the subsequent dose reconstruction. The

configuration including the beam angulations and field sizes of the

original treatment plan were copied to the CBCT and placed at the

same isocenter of the pCT. Because the MLC log-files are logged

for each independent delivery, a split IMRT field would have to

be considered as two independent subfields, each with its own de-

rived fluence map when copied to the CBCT plan. A typical HN
IMRT plan with seven split-fields would result in 14 individual sub-

fields each with its corresponding derived fluence maps. The deliv-

ered MUs for each subfield were entered when the fluence map was

regenerated. The dose reconstruction was then calculated on the

CBCT-derived patient model. The resultant dose distributions, dosi-

metric endpoints, and DVHs of the target and critical organs were

compared with those of the original plan and the other two CBCTs.
Fig. 4. An axial slice through the inserts from (a) the cone-beam computed tomography (CBCT) and (b) the planning com-
puted tomography (pCT). (c) The horizontal Hounsfield unit (HU) profiles along the lines right-to-left (RL) for the CBCT
and pCT. (d) The vertical HU profiles along the lines anteroposterior (AP) for the CBCT and pCT.
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RESULTS

Electron density calibration
Figure 3 shows the relative electron density calibration

curves for the pCT and CBCT. No significant difference in

the calibrations was noted over the range of HUs. The differ-

ences in the HUs of the inserts for the two modes of CT were

less than 10 HUs, except for the air and Teflon inserts; how-

ever, the maximum relative difference was only 5% and 3%

for the air and Teflon, respectively.

Figures 4a and 4b show the axial images of the phantom

through the inserts from the CBCT and pCT, respectively.

Fig. 5. No discernible difference was seen between the two fluence
maps except at the region indicated by the arrow.
The horizontal and vertical HU profiles along the lines

right-to-left (RL) and anteroposterior (AP) for the CBCT

and pCT are compared in Figs. 4c and 4d. The CBCT and

pCT HU profiles were in agreement to within 10% except

that the CBCT showed a larger fluctuation of HU and reduced

HUs at the periphery of the phantom.

Derivation of fluence maps from the MLC log-files
Figures 5a and 5b show a delivered fluence map derived

from the MLC log-files and the corresponding planned flu-

ence map from the TPS, respectively. There was essentially

no discernible difference in the intensity levels between the

two maps except at the region indicated by the arrow. Figures

6a and 6b depict the dose distribution on an axial slice calcu-

lated on the same pCT set using the delivered and planned

fluence maps; their corresponding DVHs of the targets and

critical organs are shown in Figs. 6c and 6d. There was essen-

tially no discernible difference in the dose distributions on the

axial slice. The DVHs of the planning tumour volumes

(PTV), gross tumour volumes (GTV), and critical organs of

the plan based on delivered fluence maps overlapped with

the ones from the plan based on planned fluence maps.

Phantom study
For the open beam dose calculation, the dose distributions

on the same axial slice from the CBCT- and pCT-based dose

calculations were essentially identical; the difference in dose

maximum was less than 0.5% (Figs. 7a and 7b). The horizon-

tal and vertical dose profiles for the CBCT- and pCT-based

calculations were in agreement to within 1% except at the field
Fig. 6. Intensity-modulated radiation therapy dose distribution on an axial slice from the planning computed tomography
for the dose calculations based on (a) the delivered and (b) the planned fluence maps. Dose volume histograms of the gross
tumor volume (GTV), planning tumor volume (PTV) (c), and the critical organs (d) for the two calculations.
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edges, where there was a maximum difference of 3%.

(Fig. 7c). The DVHs of the hypothetical target from the two

calculations essentially overlapped (Fig. 7d). The same com-

parisons were performed for the IMRT dose calculation.

There was also no significant difference in the dose distribu-

tions on the axial slices shown and in the dose maximum

points (Figs. 8a and 8b). Both the dose profiles and the

DVHs from the two calculations were in agreement to within

2% (Figs. 8c and 8d).

Patient study
Patients with PTV in the head region. Of the three patients

(A, B, and C) in the study, two had nasopharyngeal carci-

noma (NPC), the other one had esthesioneuroblastoma surgi-

cally debulked, with residual tumour at the base of skull to be

treated. The PTVs of these patients received 6,600 cGy in 30

fractions at 220 cGy per fraction. For the patients studied

here, we observed that the change in the shape of the targets

had already occurred during the 2-week waiting period.

These were then followed by a progressive change in the

shape and size of the targets during the treatment. The dosi-

metric comparisons of the pCT- with CBCT-based plans per

fraction for the three patients are shown in Table 1. For the

PTV, the dose to 95% of the volume (D95) and the volume

receiving at least 93% of the prescribed dose (V93) of the

pCT were in agreement to within 3% with those of the

CBCTs. For the GTV, the dose to 99% of the volume (D99)

also showed the same agreement between the pCT and

CBCTs. The differences in the dosimetric endpoints of the

critical organs for the pCT and CBCTs were generally in
the range of 10%; however, the difference could be as high

as 15%–20% in some individual treatment sessions for the

parotid gland, optic track, and the temporal lobe when they

were in extreme proximity with the PTV. The comparisons

of the dose distributions and the DVHs between the

pCT- and CBCT-based plans for one of the patients are

shown in Fig. 9 for illustrative purposes.

Patients with PTV in the neck region. The two other pa-

tients (D and E) we selected had primary tumors in the hypo-

pharynx and the lacrimal gland; both had undergone surgery.

There were two PTVs defined for these patients: PTV1 for the

tumor bed and PTV2 for the involved neck. PTV1 and PTV2

received 6,000 cGy and 5,400 cGy, respectively, in 30 frac-

tions at 200 cGy per fraction. Because of the limited coverage

of the CBCT, the PTV1 of one of the patients (E) was not com-

pletely included and was not compared. The main emphasis

here was to study the dosimetric impact of the change of the

neck contour on the PTV2. From the first CBCT, the neck

contours of these patients had a marked change from the

pCT, and the change was slight throughout the progression

of the treatment up to the third CBCT (Fig. 10). For the

PTV1 of the patient D, D95, and V93 of the pCT-based plan

agreed well with those of the CBCT-based plans (Table 2).

For the PTV2 of both patients, D95 and V93 showed agreement

to within 3% between the pCT- and CBCT-based plans. The

differences in the dosimetric endpoints of the critical organs

for the pCT- and CBCT-based plans were generally in the

range of 5% (Table 2). The comparisons of the dose distribu-

tions and the DVHs between the pCT- and CBCT-based plans

for one of these patients are shown in Fig. 10.
Fig. 7. Dose distribution from two orthogonal 10� 10 cm open fields on the axial slice with (a) the cone-beam computed
tomography (CBCT)-based and (b) the planning computed tomography (pCT)-based dose calculations. (c) Dose profiles
along lines right-to-left (RL) and anteroposterior (AP) for CBCT- and pCT-based calculations. (d) Dose volume histograms
of the hypothetical target for the CBCT-based and pCT-based calculations.
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Fig. 8. Intensity modulated radiation therapy (IMRT) dose distribution on the axial slice with (a) the cone-beam computed
tomography (CBCT)-based and (b) the planning computed tomography (pCT)-based dose calculations. (c) Dose profiles
along lines right-to-left (RL) and anteroposterior (AP) for CBCT-based and pCT-based calculations. (d) Dose volume his-
tograms of the hypothetical target for the CBCT-based and pCT-based calculations.
DISCUSSION

The advent of onboard CBCT expands our horizon in cor-

recting the daily setup errors and probing the geometric

change of a patient’s anatomy in his or her treatment position

during the course of radiation treatment. We have shown that
the CBCT could be further exploited for dose reconstruction

to provide the dosimetric information necessary for replan-

ning or reoptimization should there be significant deviations

in the delivered dose from the intended plan. The main hurdle

in preventing us from using the CBCT for dose reconstruction
Table 1. Comparison of dosimetric endpoints of the targets and critical organs between the pCT- and the serial CBCT-based plans for the
patients A, B, and C (Prescription: 6600 cGy to PTV in 30 fractions at 220 cGy per fraction; values shown below are for one fraction)

Patient A Patient B Patient C

Dosimetric end point pCT
CBCT1

pCT
CBCT2

pCT
CBCT3

pCT pCT
CBCT1

pCT
CBCT2

pCT
CBCT3

pCT pCT
CBCT1

pCT
CBCT2

pCT
CBCT3

pCT

PTV, D95 (cGy) 220 0.98 0.99 0.98 220 0.97 0.97 0.99 220 1.01 1.00 1.01
PTV, V93 (%) 99 0.99 1.00 0.99 100 0.99 0.98 1.00 100 1.00 1.00 1.00
GTV, D99 (cGy) 220 0.97 0.99 0.98 219 1.00 1.00 0.99 219 1.01 1.00 1.01
BS, Dmax (cGy) 165 1.06 1.04 1.04 156 1.02 1.09 1.03 153 1.08 1.02 1.03
SC, Dmax (cGy) — — — — 139 0.97 0.97 0.99 150 1.01 1.00 1.01
OC, Dmax (cGy) 164 1.01 1.13 1.06 — — — — 156 1.08 0.97 1.01
R ON, Dmax (cGy) 164 0.93 0.97 0.92 — — — — 152 1.04 0.93 1.00
L ON, Dmax (cGy) 170 1.08 0.84 1.10 — — — — 156 1.01 0.98 0.98
R PARO, Dmean (cGy) — — — — 113 1.05 0.85 1.07 90 0.97 0.99 1.19
L PARO, Dmean (cGy) — — — — 141 1.07 1.12 1.03 108 0.97 1.08 1.03
R TL, Dmax (cGy) 175 1.00 1.00 0.98 160 0.95 0.92 0.97 — — — —
L TL, Dmax (cGy) 175 1.09 1.19 1.23 158 1.03 1.06 0.98 — — — —

Abbreviations: BS = brainstem; CBCT = cone-beam computed tomography; D95 = dose to 95% of the volume; D99 = dose to 99% of the
volume; Dmax = maximum dose; Dmean = mean dose; GTV = gross target volume; L = left; OC = optic chiasm; ON = optic nerve; PARO =
parotid gland; pCT = planning computed tomography; PTV = planning target volume; R = right; SC = spinal cord; TL = temporal lobe;
V93 = volume receiving at least 93% of the prescribed dose.

Note: For each patient, the first column lists the value for the pCT-based plan, and the second to fourth columns show the ratio of the values of
the subsequent CBCT- to pCT-based plan for easier comparison. Blank cells indicate that the organ is not included in the CBCT coverage be-
cause of PTV site.
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is that the CBCT does not always warrant an image quality

comparable to conventional CT because of the scatter envi-

ronment encountered in CBCT (19). Another issue is the pro-

vision of an appropriate electron density calibration; large

variations of HU were observed for the same material under

different scanning conditions and parameters used in CBCT

(9, 10). We mitigated these problems by restricting the elec-

tron density calibration to designated scanning parameters

and using a cylindrical phantom with a caliber close to a pa-

tient’s HN region. By scanning the Catphan in the similar

scanning parameters in pCT and in CBCT, we found that

the electron density calibration curves had no significant dif-

ference except for that of the air and Telfon; however, these

3%–5% HU difference will not transform into clinically sig-

nificant difference in doses (<1%) (20, 21). This explained

why the fluctuating HUs and peripheral reduced HUs seen

in the CBCT phantom images (Figs. 4c and 4d) did not lead

to any significant difference in the dose profiles (Figs. 7c

and 8c) when we validated the CBCT for dose calculation.

Therefore, we adopted to use the commissioned pCT electron

density calibration for the CBCT dose calculation; this has

also been proposed by Yoo and Yin on the basis of the

same argument (9). The good agreement of the DVHs of the

hypothetical targets for the pCT- and CBCT-based dose cal-

culations (Figs. 7d and 8d) further justifies our method. How-

ever, the ultimate solution is the continual improvement in the

image reconstruction algorithm for the CBCT making it more
consistent and reliable under different scanning conditions

and parameters (19). The results from the phantom study

strongly supported that the CBCT obtained under the pro-

posed scanning condition could be directly used for dose

reconstruction.

The MLC log-files have been validated to faithfully reflect

the actual delivery process of a MLC-based IMRT (17, 18);

this serves to be a powerful tool in verifying or reconstructing

the IMRT dose delivered to the patients. The use of the MLC

sequence files from the original plan instead of the MLC log-

files in dose reconstruction, which most other research

groups did (9, 11, 22, 23), rests on the assumption the treat-

ment was indeed delivered as intended. Our approach of

using MLC log-file is more realistic and has the potential to

take MLC delivery errors into account. This approach is

straightforward and easy to implement in a clinic.

From the serial CBCTs performed on the patients, we

noticed that the first CBCT provided valuable geometric

information about the target and the patient’s topography at

the start of the treatment. The other two CBCTs monitored

the geometric change of the internal anatomy and the dose

reconstruction of these provided us the necessary dosimetric in-

formation necessary for the decision of replanning or reopti-

mizing. From the patient study, we found that there was no

significant compromise (<3%) on the target coverage even

though there was evidence of geometric changes during the

course of treatment. The impact of these geometric changes,
Fig. 9. (a) Geometric change of the target of patient B was noted in the first cone-beam computed tomography (CBCT).
The CBCT dose reconstructions yielded dose distributions close to that of the original plan. (b) The dose volume histo-
grams (DVHs) of the gross tumor volume (GTV) for the planning computed tomography (pCT)-based and cone-beam
computed tomography (CBCT)-based plans essentially overlapped. (c) The coverage of the planning tumor volume
(PTVs) in the CBCTs were slightly compromised when compared with that of the pCT. The dose volume histograms
of the critical organs of the CBCT-based plans deviated from those of the original plan in various degrees (b) and (c).
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however, largely affected the dose deposited to the critical or-

gans in the vicinity of the target. This might be due to the steep

dose gradient that commonly exists between the target and the

critical organs in an IMRT plan, and any deviated geometric

change, whether due to the residual setup error, tumor shrink-

age, organ deformation or patient weight loss, would result in

a considerable change (up to 20%) in the dose received by these

critical organs. Another less subtle reason is the inaccuracy in

contouring these organs in the CBCT that was not supple-

mented by the contrast enhancement or magnetic resonance im-

aging (MRI) fusion as the pCT had been. This is particularly

crucial when one comes to an organ of small volume such as

the optic nerve or optic chiasm, for which a slight error in con-

touring would cause a drastic change of the dose received

(Table 1). In the patients with targets in the neck region, despite

the fact that there were marked changes of the neck contour on

the CBCTs compared with the pCT, the coverage of the neck

target (PTV2) was not significantly compromised, probably be-

cause these patients’ original PTV2 had been markedly modi-

fied to be confined to the neck and still received adequate dose

coverage. Because of the small number of patients in this work,

it is not recommended that these findings be generalized to the

dosimetric impact of geometric changes. Nevertheless, this

work gives us some insight how important and useful the on-

treatment serial CBCTs could be in adapting the radiation treat-

ment in future.
Although we have set up a methodology and procedures to

reconstruct the IMRT dose on CBCT, we still face some prac-

tical issues in implementing it into clinical practice. First, we

must determine how many CBCTs should be taken, and how

often, so that a clinically meaningful intervention can rely on.

The contouring of the targets and organs in all the CBCTs is

another practical problem we encounter; until we have a reli-

able deformable image registration that can directly propa-

gate the contours from the pCT to CBCTs (24, 25), it is

difficult to handle contouring in a large number of CBCT

sets. Furthermore, it has always been technically challenging

to interpret dose distributions and DVHs and infer from them

the cumulative doses from various sets of 3D patient models

with changing internal anatomy (26, 27). The DVH definition

may need to be redefined to handle the changing target (28).

We must identify predictive indices on the basis of all the do-

simetric information gained from the CBCTs to guide us in

making a clinical decision regarding when and how a treat-

ment can be adapted appropriately and efficaciously should

the need arise. All these factors need to be addressed in future

research. An ideal paradigm that integrates a seamless work-

flow from simulation to planning, verification, offline or on-

line replanning (15), and finally delivery is essential for the

success of adaptive radiation therapy (26). This study has

demonstrated the fundamental steps required for the full im-

plementation of using CBCT for this ideal paradigm.
Fig. 10. (a) Marked changes of the neck contour (white arrows) and planning tumor volume 2 (PTV2) were noted in the
first cone-beam computed tomography (CBCT) of patient D. The CBCT dose reconstructions otherwise yielded dose
distributions close to that of the original plan when geometric changes were taken into account. (b) The dose volume
histograms (DVHs) of the PTV1 for the planning computed tomography (pCT)- and CBCT-based plans essentially over-
lapped . (c) The coverage of the PTV2s in the CBCT-based plans were slightly compromised compared with that of the
pCT-based plan. The DVHs of the spinal cord of the CBCT-based plans deviated from those of the original plan (b).
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Table 2. Comparison of dosimetric endpoints of the targets and critical organs between the pCT- and the serial CBCT-based plans for
patients D and E (prescription: 6,000 cGy to PTV1 and 5,400 cGy to PTV2 in 30 fractions at 200 cGy per fraction; values shown are for

one fraction)

Patient D Patient E

Dosimetric end
point pCT CBCT1

pCT
CBCT2

pCT
CBCT3

pCT pCT CBCT1
pCT

CBCT2
pCT

CBCT3
pCT

PTV1, D95

(cGy)
200 1.00 1.00 1.00 — — — —

PTV1, V93 (%) 100 1.00 1.00 1.00 — — — —
PTV2, D95

(cGy)
182 0.99 0.99 0.99 179 0.98 0.98 0.97

PTV2, V93 (%) 100 1.00 1.00 1.00 100 0.99 1.00 0.99
BS, Dmax (cGy) — — — — 124 0.96 0.97 0.92
SC, Dmax (cGy) 135 1.05 1.04 1.05 109 1.05 1.04 1.00

Abbreviations: BS = brainstem; CBCT = cone-beam computed tomography; D95 = dose to 95% of the volume; Dmax = maximum dose;
pCT = planning computed tomography; PTV1 = planning target volume 1 (tumour bed); PTV2 = planning target volume 2 (neck); SC = spinal
cord; V93 = volume receiving at least 93% of the prescribed dose.

Note: For each patient, the first column lists the value for the pCT-based plan, and the second to fourth columns show the ratio of the values of
the subsequent CBCT- to pCT-based plans for easier comparison. Blank cells indicate that the target or organ is not included in the CBCT
coverage.
CONCLUSIONS

In this study, we established methodology and procedures

to reconstruct the IMRT dose delivered on the basis of a series

of on-treatment CBCTs and the MLC log-files, pragmatically

taking into account geometric changes of patients’ anatomy

over time and the potential inaccuracy in the IMRT delivery.
Dose reconstruction is valuable for examining the actual dose

delivered to a patient at a particular fraction. This maneuver

affords an objective dosimetric basis for clinical decision

making on whether replanning or reoptimization is necessary

during the course of treatment. It also provides a valuable

platform for adaptive radiation therapy in future.
REFERENCES
1. Barker JL Jr., Garden AS, Ang KK, et al. Quantification of vol-
umetric and geometric changes occurring during fractionated
radiotherapy for head-and-neck cancer using an integrated
CT/linear accelerator system. Int J Radiat Oncol Biol Phys
2004;59:960–970.

2. Sobel S, Rubin P, Keller B, et al. Tumor persistence as a predic-
tor of outcome after radiation therapy of head and neck cancers.
Int J Radiat Oncol Biol Phys 1976;1:873–880.

3. Yan D, Lockman D, Martinez A, et al. Computed tomography
guided management of interfractional patient variation. Semin
Radiat Oncol 2005;15:168–179.

4. Ma CM, Paskalev K. In-room CT techniques for image-guided
radiation therapy. Med Dosim 2006;31:30–39.

5. Oldham M, Letourneau D, Watt L, et al. Cone-beam-CT guided
radiation therapy: A model for on-line application. Radiother
Oncol 2005;75:271–278.

6. Jaffray DA, Siewerdsen JH, Wong JW, et al. Flat-panel cone-
beam computed tomography for image-guided radiation ther-
apy. Int J Radiat Oncol Biol Phys 2002;53:1337–1349.

7. Pouliot J, Bani-Hashemi A, Chen J, et al. Low-dose megavolt-
age cone-beam CT for radiation therapy. Int J Radiat Oncol Biol
Phys 2005;61:552–560.

8. Mackie TR, Kapatoes J, Ruchala K, et al. Image guidance for
precise conformal radiotherapy. Int J Radiat Oncol Biol Phys
2003;56:89–105.

9. Yoo S, Yin FF. Dosimetric feasibility of cone-beam CT-based
treatment planning compared to CT-based treatment planning.
Int J Radiat Oncol Biol Phys 2006;66:1553–1561.

10. Yang Y, Schreibmann E, Li T, et al. Evaluation of on-board kV
cone beam CT (CBCT)-based dose calculation. Phys Med Biol
2007;52:685–705.
11. Langen KM, Meeks SL, Poole DO, et al. The use of megavolt-
age CT (MVCT) images for dose recomputations. Phys Med
Biol 2005;50:4259–4276.

12. Ezzell GA, Chungbin S. The overshoot phenomenon in step-
and-shoot IMRT delivery. J Appl Clin Med Phys 2001;2:
138–148.

13. Xia P, Chuang CF, Verhey LJ. Communication and sampling
rate limitations in IMRT delivery with a dynamic multileaf
collimator system. Med Phys 2002;29:412–423.

14. Wiersma R, Xing L. Examination of geometric and dosimetric
accuracies of gated step-and-shoot IMRT. Med Phys 2007;34:
3962–3970.

15. Litzenberg DW, Hadley SW, Tyagi N, et al. Synchronized
dynamic dose reconstruction. Med Phys 2007;34:91–102.

16. Yoo S, Kim GY, Hammoud R, et al. A quality assurance pro-
gram for the on-board imagers. Med Phys 2006;33:4431–4447.

17. Li JG, Dempsey JF, Ding L, et al. Validation of dynamic MLC-
controller log files using a two-dimensional diode array. Med
Phys 2003;30:799–805.

18. Stell AM, Li JG, Zeidan OA, et al. An extensive log-file analy-
sis of step-and-shoot intensity modulated radiation therapy seg-
ment delivery errors. Med Phys 2004;31:1593–1602.

19. Zhu L, Starlack J, Bennett NR, Li T, Xing L, Fahrig R. Im-
proved scatter correction for x-ray conebeam CT using primary
modulation. In: Hsieh J, Flynn M, editors. Proceedings of SPI:
Medical Imaging 2007: Physics of Medical Imaging, San
Diego, CA; 2007.

20. Cozzi L, Fogliata A, Buffa F, et al. Dosimetric impact of
computed tomography calibration on a commercial treatment
planning system for external radiation therapy. Radiother Oncol
1998;48:335–338.



644 I. J. Radiation Oncology d Biology d Physics Volume 70, Number 2, 2008
21. Guan H, Yin FF, Kim JH. Accuracy of inhomogeneity correc-

tion in photon radiotherapy from CT scans with different set-

tings. Phys Med Biol 2002;47:N223–N231.
22. Hansen EK, Bucci MK, Quivey JM, et al. Repeat CT imaging

and replanning during the course of IMRT for head-and-neck

cancer. Int J Radiat Oncol Biol Phys 2006;64:355–362.
23. Morin O, Chen J, Aubin M, et al. Dose calculation using mega-

voltage cone-beam CT. Int J Radiat Oncol Biol Phys 2007;67:

1201–1210.
24. Xing L, Thorndyke B, Schreibmann E, et al. Overview of im-

age-guided radiation therapy. Med Dosim 2006;31:91–112.
25. Schreibmann E, Chen GT, Xing L. Image interpolation in 4D
CT using a BSpline deformable registration model. Int J Radiat
Oncol Biol Phys 2006;64:1537–1550.

26. Zerda Adl, Armbruster B, Xing L. Formulating adaptive radia-
tion therapy (ART) treatment planning into a closed-loop con-
trol framework. Phys Med Biol 2007;52:4137–4153.

27. Yan D, Jaffray DA, Wong JW. A model to accumulate fraction-
ated dose in a deforming organ. Int J Radiat Oncol Biol Phys
1999;44:665–675.

28. Nioutsikou E, Webb S, Panakis N, et al. Reconsidering the
definition of a dose-volume histogram. Phys Med Biol 2005;
50:L17–L19.



Int. J. Radiation Oncology Biol. Phys., Vol. 70, No. 2, pp. 599–608, 2008
Copyright � 2008 Elsevier Inc.

Printed in the USA. All rights reserved
0360-3016/08/$–see front matter

doi:10.1016/j.ijrobp.2007.09.057
PHYSICS CONTRIBUTION

AUTOMATED CONTOUR MAPPING WITH A REGIONAL DEFORMABLE MODEL

MING CHAO, PH.D., TIANFANG LI, PH.D., EDUARD SCHREIBMANN, PH.D.,
ALBERT KOONG, M.D., AND LEI XING, PH.D.

Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA

Purpose: To develop a regional narrow-band algorithm to auto-propagate the contour surface of a region of inter-
est (ROI) from one phase to other phases of four-dimensional computed tomography (4D-CT).
Methods and Materials: The ROI contours were manually delineated on a selected phase of 4D-CT. A narrow band
encompassing the ROI boundary was created on the image and used as a compact representation of the ROI sur-
face. A BSpline deformable registration was performed to map the band to other phases. A Mattes mutual infor-
mation was used as the metric function, and the limited memory Broyden-Fletcher-Goldfarb-Shanno algorithm
was used to optimize the function. After registration the deformation field was extracted and used to transform
the manual contours to other phases. Bidirectional contour mapping was introduced to evaluate the proposed tech-
nique. The new algorithm was tested on synthetic images and applied to 4D-CT images of 4 thoracic patients and
a head-and-neck Cone-beam CT case.
Results: Application of the algorithm to synthetic images and Cone-beam CT images indicates that an accuracy of
1.0 mm is achievable and that 4D-CT images show a spatial accuracy better than 1.5 mm for ROI mappings be-
tween adjacent phases, and 3 mm in opposite-phase mapping. Compared with whole image–based calculations,
the computation was an order of magnitude more efficient, in addition to the much-reduced computer memory
consumption.
Conclusions: A narrow-band model is an efficient way for contour mapping and should find widespread applica-
tion in future 4D treatment planning. � 2008 Elsevier Inc.

Deformable model, Image registration, Contour mapping, IGRT.
INTRODUCTION

Segmentation of a region of interest (ROI), such as a tumor

target volume or a sensitive structure, is an important but

time-consuming task in radiotherapy (1–6). With the emer-

gence of four-dimensional (4D) imaging and adaptive radio-

therapy, the need for efficient and robust segmentation tools

is even increasing (7–11). Because of dramatically increased

numbers of images, it becomes impractical to manually seg-

ment the ROIs slice by slice as in current three-dimensional

radiotherapy practice. A natural solution to the 4D computed

tomography (4D-CT) segmentation problem is to delineate

the ROIs on a selected phase and then propagate the contours

onto other phases using a mathematical model. Along this

line, deformable model–based contour mapping has been

implemented by a few groups (12–14). Although feasible,

the calculation is global in nature and thus computationally

intensive. In addition, the accuracy of the mapped contours

may be compromised because the registration may be
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influenced unnecessarily by the image content distant from

the ROIs, which would otherwise be irrelevant to the contour

mapping process. This is especially problematic when non-

local deformable models, such as thin plate spline and elastic

model, are used. In general, contour mapping is a regional

problem, and a global association of the phase-based images

is neither necessary nor efficient.

Surface mapping techniques (15–17) represent a competi-

tive alternative to the deformable model–based approach.

The idea of surface mapping is to obtain contour transforma-

tion by iteratively deforming the ROI contour-extended sur-

face until the optimal match with the reference is found. The

calculation involves only the surface region and is thus com-

putationally efficient. Numerous surface mapping techniques

have been developed in the past, which include, to name

a few, spatial partitioning, principal component analysis,

conformal mapping, rigid affine transformation, deformable

contours, and warping based on the thin-plate spline. All of

(5R01 CA98523 and 1 R01 CA98523).
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these techniques are a mapping between topologic compo-

nents of the input surfaces that allow for transfer of annota-

tions. Although the calculations are inherently efficient, the

results depend heavily on the model used, which may not

be generally applicable for all clinical situations because

the ROI surface is multidimensional and hardly modeled

by only a few parameters.

In this work, we present a novel regional algorithm for ROI

propagation among different 4D-CT phases. The deforma-

tion of an ROI contour-extended surface in our algorithm is

not driven by an ad hoc surface-based model but instead by

the image features in the neighborhood of the surface. The

underlying hypothesis here is that information contained in

the ROI boundary region is sufficient to guide the contour

mapping process. In the proposed algorithm the neighbor-

hood image features of an ROI are captured by a narrow

band, which is composed of all points within two surfaces

with the signed distances of �d from the ROI boundary.

The algorithm is a hybrid of the regional surface–based

model and the global deformable registration–based ap-

proach. The combination takes advantage of the desirable

features of each of these two techniques and provides a robust

and computationally efficient contour propagation tool for

4D radiotherapy.

METHODS AND MATERIALS

Software platform
The proposed contour mapping algorithm was implemented using

the Insight Toolkit (18) and the Visualization Toolkit (19), which

are open source cross-platform C++ software toolkits sponsored

by the National Library of Medicine.

Overview of the mapping process
Figure 1 depicts the overall contour mapping process. For a given

4D-CT image set, a selected phase, named the template phase, was

selected, and the ROIs were manually delineated by a physician. The

manually outlined contour was referred to as the template contour. A

narrow band encompassing the template contour was created (see

next section for details). A deformable mapping was then carried

out to propagate the band from the template phase to other phases,

referred to as target phases. Upon successful mapping of the band,

the deformation field was used to transform the template contour

to the target images.

Narrow-band representation of ROI contour
The contour manually segmented on an axial slice of the template

image has a polygon shape, and the vertices of the polygon form the

basis for constructing the narrow band. As schematically shown

in Fig. 2, a band with signed distances�d was placed along the tem-

plate contour. The regional image features contained in the band

function serve as a ‘‘signature’’ of the contour and drive the contour

mapping process. The distance between the neighboring vertices on

the contour is typically 2–10 mm, depending on the shape of the

contour. In generating the narrow band, we first created cubes

with a side length of 2d around all the vertices, as depicted by points

A and B in Fig. 2. To obtain a smooth band, between A and B three

more cubes, centered at points C, D, and E, were inserted. Point C

was chosen to be the middle point between A and B, point D the

middle between A and C, and point E the middle between C and
B. More interpolated vertex points can be introduced similarly

when needed. Figure 3 illustrates a narrow band surrounding the

lung boundary on the template phase CT image. The light green

area stands for the narrow band, and the green curve is the manual

contour. The width of the narrow band was set to be 2d = 15 mm

in our calculations. To examine the robustness of the proposed map-

ping algorithm, a variety of other bandwidths, ranging from 4 mm

through 30 mm, were also tested for one of the clinical cases.

Contour propagation
As illustrated in Fig. 1, the process of contour mapping is essen-

tially to warp the narrow band constructed above in such a way

that its best match in the target image is found. Mathematically,

the mapping process of the narrow band constitutes an optimization

problem, in which a group of transformation parameters that trans-

form the points within the band in the template phase to their homol-

ogous points in the target image. The warping of the narrow band is

quantified by a metric function, which ranks a trial matching based on

the ‘‘accordance’’ level of the image content of the band and its cor-

respondence in the target image. The calculation process is detailed

below.

Fig. 1. Flow chart of narrow band–based contour mapping proce-
dure. (a) Overall calculation process. (b) Deformable mapping pro-
cess of the narrow band.
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Fig. 2. A schematic drawing of narrow-band construction.
The input to the contour mapping software includes the narrow

band and the whole target image, which are described by the image

intensity distributions Ia(x) and Ib(x), respectively. It is worth em-

phasizing that, even though the whole target image was used, only

fractional voxels in the target image (the voxels encompassed by

the band) are involved in each iteration (a subregion surrounding

the ROI on the target image could be created and used in the calcu-

lation, but the algorithm converged so fast that after two to three it-

erations the searching was quickly confined in the neighborhood of

the optimal solution). The narrow band acts as a representation of

the ROI contour. The task is to find the transformation matrix,

T(x), that maps an arbitrary point in the band to the corresponding

point on the target image (or vice versa) so that the best possible cor-

respondence, as measured by the metric function, is achieved. The

calculation proceeds iteratively. A BSpline deformable model is

used to model the deformation of the band, but other models should

also be applicable. The spacing between the BSpline nodes was cho-

sen to be approximately 0.5 cm (smaller spacing was tested, but no

significant difference was found in the final registration results). The

displacement of a node i is specified by a vector xi, and the displace-

ment vectors (20) of a collection of nodes characterize the tissue

deformation. The displacement at a location x on the image is de-

duced by a BSpline polynomial fitting.

The Mattes Mutual Information (MMI) (21) was used as the met-

ric function for narrow-band mapping (22–25). The central concept
Fig. 3. Computed tomographic images with manual contours and the narrow bands for patient 1. The narrow bands are
shown in light green and the contours are green curves. (a) Transverse view; (b) coronal view; (c) sagittal view.
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of mutual information (MI) is the calculation of entropy. For an im-

age A, the entropy is defined as

H

�
A

�
¼ �

Z
pAðaÞlog pAðaÞda;

where pA(a) (also called the marginal probability density function

[PDF]) is the probability distribution of grey values (image intensi-

ties), which is estimated by counting the number of times each grey

value occurs in the image and dividing those numbers by the total

number of occurrences. Given two images, A and B, their joint en-

tropy is

H

�
A;B

�
¼ �

ZZ
pABða; bÞlog pABða; bÞdadb;

where pAB(a,b) is the joint PDF defined by a ratio between the

number of grey values in the joint histogram (feature space) of

two images and the total entries (26). The mutual information is gen-

erally expressed as

MIðA;BÞ ¼ HðAÞ þ HðBÞ � HðA;BÞ:

Mutual information measures the level of information that a ran-

dom variable (e.g., Ia(x)) can predict about another random variable

(e.g., Ib(x)). Different from the conventional MI, whereby two sep-

arate intensity samples are drawn from the image, the Mattes imple-

mentation, MMI, uses only one set of intensity to evaluate both the

marginal and joint PDFs at discrete positions or bins that uniformly

spread within the dynamic range of the images. Entropy values were

computed by summing over all the bins. The number of bins used to

compute the entropy in MMI metric evaluation was chosen to be 30,

and the number of spatial samples used was 20,000. Details of MMI

implementation can be found in Mattes et al. (21).

The limited memory Broyden-Fletcher-Goldfarb-Shanno algo-

rithm (L-BFGS) (27–29) was used to optimize the MMI metric func-

tion with respect to the displacement parameters of the nodes, {xi},

to find the transformation matrix T(x) that relates the points on

image A and image B. Here we just briefly show the algorithm.

Starting from a positive definitive approximation of the inverse

Hessian H0 at x0, L-BFGS derives the optimization variables by

iteratively searching through the solution space. At an iteration k,

the calculation proceeds as follows: [1] determine the descent

direction pk ¼ �HkVf ðxkÞ; [2] line search with a step size

ak ¼ arg min f
aR0 ðxk þ apkÞ, where a is the step size defined in the L-

BFGS software package; [3] update xk+1 = xk + ak pk ; and [4] com-

pute Hk+1 with the updated Hk .

At each iteration a backtracking line search is used in L-BFGS to

determine the step size of movement to reach the minimum of f
along the ray xk + apk. For convergence a has to be chosen such

that a sufficient decrease criterion is satisfied, which depends on

the local gradient and function value and is specified in L-BFGS

by the Wolfe conditions (27). During the course of optimization,

the above iterative calculation based on L-BFGS algorithm con-

tinues until the following stopping criterion is fulfilled:

kVf ðxkÞk2

maxð1; kxkk2Þ
\3

or a pre-set maximum number of iterations is reached. In this study

we set 3 = 106 and the iteration number to 200, but no more than 100

iterations were exceeded in all our calculations for the algorithm to

converge.
Evaluation of algorithm performance
Evaluation of a contour mapping algorithm is a difficult task be-

cause of the lack of the ground truth for comparison. A straightfor-

ward means of evaluation is the visual inspection of the mapped

contours. In addition to this, evaluation based on synthetic images

(digital phantoms) is also commonly used. The images and existing

contours are distorted with preset deformation fields. Because the

gold standard is known, a direct comparison with the mapped con-

tour is made so as to assess the propagation algorithm quantitatively.

Beside these two methods, we further performed a bidirectional

mapping to evaluate the proposed algorithm. In this test, the reverse

of the original contour mapping was performed: the mapped con-

tours on the target phase were treated as the template contours and

mapped back to the original template phase. The contours so ob-

tained were then compared with the original manual contours, and

the difference between the two sets of contours was quantified.

The difference between the resultant and template contours was

measured in terms of the displacements of the vertex points on the

two contours. The last yet pragmatic evaluation of the algorithm per-

formance on patient’s study was based on the physician’s manual

contours.

Case study
Four thoracic cancer patients, named as patient 1, 2, 3, and 4, were

first used to test the proposed algorithm. These patients underwent

4D-CT scans. The 4D-CT images were acquired with a GE Discov-

ery-ST CT scanner (GE Medical System, Milwaukee, WI). The col-

lected data were sorted into 10 phase bins. The ROIs on the template

phase were manually segmented by a physician. Specifically, for pa-

tients 1 and 2, the inhale phase was chosen for manual segmentation,

and for patients 3 and 4, the exhale phase. Different ROIs were used

to better evaluate the algorithm. Lungs were selected from patients

1, 2, and 3 and gross tumor volume (GTV) from patient 4. Figure 3

illustrates the manual contour and narrow band representation for

the lung from patient 1. Contour is shown in the green curve together

with the regional narrow bands (light green area) on the transverse,

coronal, and sagittal views (Figs. 3a, 3b, and 3c, respectively).

To further assess the robustness of the proposed algorithm, we

also carried out the contour propagation calculation from planning

CT to Cone-beam CT (CBCT) for a head-and-neck case. The

CBCT images were acquired using the Varian Trilogy system (Var-

ian Medical Systems, Palo Alto, CA).

RESULTS

Convergence analysis
To better illustrate the iterative process of the contour

propagation, in Fig. 4 the MMI metric as a function of itera-

tion step is plotted for the narrow band mapping from the first

phase (inhale phase) to the other nine phases for the first tho-

racic patient. In all nine calculations it is seen that the metric

value decreases monotonically as the iteration proceeds.

However, the number of iterations needed for the algorithm

to find the optimal solution varies. It is interesting to observe

that, for an ‘‘easier’’ mapping whereby the deformation be-

tween the two phases is small, the number of iterations

required is less, whereas for ‘‘tougher’’ ones with larger dif-

ferences in ROI shapes, the required number of iterations in-

creases drastically. Indeed, from Fig. 4 it is seen that the

minimum number of iterations required for the metric to sat-

urate occurs when mapping the phase 1 to the adjacent
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phases, 2 and 10. For other mapping, the required iteration in-

creases and reaches its largest value for the ‘‘toughest’’ map-

ping between inhale and exhale (phase 5) phases.

In the above analysis, the bandwidth was set to be 15 mm.

The performance of the proposed algorithm was also evalu-

ated by varying the width in the range of 4 mm and 30

mm. Specifically, we tried the widths of 4 mm, 8 mm, 10

mm, 15 mm, 20 mm, and 30 mm. Our results revealed that,

when the band was too narrow (e.g., 4 mm), the mapping

may fail locally at a place not containing sufficient neighbor-

hood image features. The situation is improved dramatically

as the bandwidth increases. For all the clinical cases studied

here, no single failure was observed for a width of 15 mm.

When the width is too large, the whole ROI will be included

in the band. In this situation, the mapping becomes equiva-

lent to registering the whole image and the advantage of

the narrow band will be overshadowed by the dramatically

increased memory and computing costs. Our experience indi-

cates that a width of 10–15 mm provides a fine balance

between the computational accuracy and the associated cost.

We found that the overall computing time was increased

by roughly an order of magnitude when going from the nar-

row band approach to the conventional deformable model–

based contour mapping, say, approximately 3 min for narrow

band–based mapping vs. approximately 25 min for whole

image–based mapping. The dramatically increased computer

memory requirement in the latter case also posts a serious

problem when developing a clinically practical contour prop-

agation method for 4D radiotherapy.

Algorithm performance evaluation
In addition to visual inspect, the proposed algorithm was

assessed by a series of synthetic images or digital phantoms.

Typically, a thoracic CT image together with the contour was

distorted with the intentionally introduced deformation, and

then the contour was propagated onto the distorted image.

Fig. 4. Narrow-band metric values as a function of iteration step
when mapping the narrow band from phase 1 to the other nine
phases of the four-dimensional computed tomography.
A quantitative comparison was carried out. The mean and

maximum separation between the gold standard and the map-

ped contours were found to be 1.0 mm and 1.5 mm, respec-

tively. Figure 5 shows one example of digital phantom

experiments.

The performance of the proposed algorithm was further

evaluated by the bidirectional mapping calculation outlined

in Methods and Materials. A template contour at phase 1

was first mapped to phases 3 and 6. The mapped contours

were then treated as the ‘‘starting contours’’ and mapped

back to phase 1. The two back-mapped contours were com-

pared with the original template contour. The displacement

of each back-mapped vertex point relative to its original loca-

tions was computed, and a mean value of 0.8 mm was found

for the bidirectional mapping between phases 1 and 3 and 1.8

mm between phases 1 and 6. The larger displacement in the

latter situation was due to the fact that, computationally, it is

more difficult to map between two opposite phases, such as

inhale and exhale phases, owing to larger organ deforma-

tions. Overall, the observed displacement is comparable to

the pixel size, indicating that the mapping is accurate and

robust.

Thoracic patient study results
Figure 6 shows the contour mapping results for the first

clinical case. The results are presented in axial, coronal,

and sagittal planes for phases 2 (Fig. 6a–c), 6 (Fig. 6d–f), 8

(Fig. 6g–i), and 10 (Fig. 6j–l). For phases 2 and 10, which

are immediately adjacent to the inhale phase, the deformation

is relatively small and the mapped contours conform to the

ROI boundary very well. This represents the ‘‘easy’’ map-

ping situation and is consistent with the analysis presented

above. The average error was less than 1.5 mm. For a ‘‘re-

mote’’ phase, such as phase 6 shown in Fig. 6d–f, more

Fig. 5. Synthetic image and overlaid contours. The original contour
is depicted in green, gold standard contour in blue, and the mapped
contour in red.
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Fig. 6. Computed tomographic images and mapped contours for thoracic patient 1. Displayed are selected phases. From
the top row to bottom, phases 2, 6, 8, and 10 are presented, respectively. For each phase, transverse, coronal, and sagittal
views are shown from left to right.
iterations were entailed to find the optimal solution, and the

resultant contours tend to be worse as compared with those

phases adjacent to phase 1. According to the bidirectional

mapping, the average mapping error for phase 6 was esti-

mated to be less than 3 mm. The mapped GTV contours (in

red) together with manual contours (in blue) by a physician
for phases 1, 4, 8, and 10 in the study of patient 4 are shown

in Fig. 7 (parts a, b, d, and e, respectively). The template

phase (phase 6) with the template manual contour

(in green) is shown in Fig. 7c. In addition, the template man-

ual contour from this phase was overlaid on all the displayed

phases. For phases 4 and 8 the deformation was relatively
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Fig. 7. Axial view of computed tomographic images with gross tumor volume contours for the fourth thoracic patient. (a),
(b), (c), (d), and (e) correspond to phases 1, 4, 6 (template phase), 8, and 10, respectively. The green curves are the manually
outlined template contour from phase 6, and the red curves represent the contours after warping. The manual contours (in
blue) by a physician on individual phases were also displayed.
small (the manual contour was delineated on phase 6), and

fewer iterations were needed to find the optimal bands on

the target images. For phases 1 and 10, whereby deformation

was significant in the ROIs although more computing load

was necessary, a good result was still achieved with our nar-

row-band technique. Comparisons between the mapped con-

tours and the manually segmented contours by physicians for

these patients were also performed, and results revealed

a similar level of accuracy (maximum and mean values of

the discrepancy between the two sets of contours are 2.8

mm and –0.9 mm, respectively).

As a useful application of the proposed technique, in Fig. 8

we present the mean and maximum lung displacements of

contour vortices for each breathing phase relative to their lo-

cations on the template phase. As seen in Fig. 8, the overall

behavior of the mean and maximum displacements is consis-

tent with our intuitive expectation. For cases 1 and 2, the in-

hale phase (phase 1) was manually segmented, thus the

displacement for that phase is zero. For other phases, both

mean and maximum displacement values vary with the

breathing phase and reach their maxima at the opposite

phase. For case 3 the exhale phase was manually segmented,

and the behavior was thus opposite to cases 1 and 2. In gen-

eral, an average displacement of approximately 3 mm was

found for inhale and exhale phases. A slight digression is no-

ticed in phase 7 of patient 1, which may be caused by 4D-CT

binning artifacts. This type of data is particularly useful in

determining the patient-specific tumor margin to account

for breathing motion of the tumor target.
Contour propagation in a head-and-neck case
The results of contour mapping for the head-and-neck case

are summarized in Fig. 9. Figure 9a shows the planning CT

along with manually delineated contours, and Fig. 9b dis-

plays the mapped contours of the body, mandible, and

GTV on CBCT. For body and mandible a simple rigid map-

ping is enough to achieve high accuracy. For the GTV, how-

ever, the proposed deformable registration model was

necessary to adequately propagate the contour. A visual

inspection of the propagated contours suggests that the map-

ping is clinically acceptable.

DISCUSSION

Four-dimensional CT image segmentation represents

a necessary step in constructing a 4D patient model and com-

puting the accumulated dose in 4D radiotherapy. A natural

way to tackle the problem is to auto-map the manually delin-

eated contours on one of the phases to the remaining phases.

In this work, a regional computing algorithm was introduced

to deal with the issue. The approach relies on the assumption

that a narrow band surrounding the manually segmented con-

tour can capture sufficient information to drive the finding of

its counterparts in other phases of the 4D-CT. Obviously, this

assumption is valid when the band is sufficiently wide so that

a large number of voxels are involved in the registration cal-

culation. As demonstrated by the presented data, the registra-

tion and the mapping are reliable when the bandwidth is

larger than 4 mm. Computationally, the proposed approach
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Fig. 8. Displacement of region of interest boundary points as a function of respiration phase for three thoracic patients. (a)
Mean displacement vs. phase. (b) Maximum displacement vs. phase. 4D CT = four-dimensional computed tomography.
resides between a deformable model–based mapping and

a surface model–based ROI contour mapping.

The success of the image content–based approaches, such

as the proposed narrow-band approach or conventional de-

formable image registration, arises from the fact that they

fully utilize the inherent image features of the two input im-

ages. The narrow band–based technique is particularly attrac-

tive because it takes advantages of the useful features of both

image content–based technique and the regional surface–

based model. In a sense, it is a hybrid approach of the two dis-

tinct types of algorithms. The narrow-band approach utilizes

the imaging features surrounding the ROI to guide the search

of the optimal mapped contours while considering the shape

integrity of the ROI surface. It eliminates the need for a global
registration of the input images and thus greatly increases the

computational efficiency.

Application of the proposed contour mapping technique to

five clinical cases indicates that the technique is accurate and

computationally efficient. A common problem in image

segmentation and contour mapping studies is the lack of

quantitative validation. In the studies of Lu et al. (13) and

Schriebmann et al. (14), for example, the accuracy of

a deformable model–based contour mapping technique was

evaluated purely on the basis of visual inspection. Although

it is a convenient way for rapid assessment of a segmentation

calculation, especially in a case in which the ‘‘ground truth’’

contours do not exist, the method falls short in quantization.

The same approach was used in many other previous
Fig. 9. Contour propagation in a head-and-neck case. (a) Planning computed tomography with manually outlined template
contours (in blue) for body, mandible, and gross tumor volume. (b) Cone-beam computed tomography along with contours
after warping (in red) for the corresponding structures.
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investigations (1, 5, 14, 30). In this study, a bidirectional con-

tour mapping was proposed to examine the reliability and ro-

bustness of a contour mapping technique. This method

provides a useful test in assessing the success of a contour

propagation algorithm. We would like to point out that the bi-

directional mapping technique introduced in this work is

a necessary (but not sufficient) test. In a rare but possible sit-

uation, the bidirectional mapping may not be able to find that

an error occurred in the narrow-band mapping process. A vi-

sual inspection of the mapped result may help in this situa-

tion. On the basis of the bidirectional mapping experiments

and visual inspection for the patient studies, we conclude

that the proposed approach can perform very well even in

the presence of significant deformations.

In our calculation, we observed that the regular grid of

BSpline control points could be mapped to a region outside

the narrow band. Although it seems that this does not directly

affect the accuracy of the method, it may prolong the calcu-

lation by computing the displacements in regions where met-

ric information is irrelevant. Setups have been proposed to

adapt the splines control mesh to regions where deformation

is found to be significant (31), and the extension of the

method would allow us to use the BSpline control points de-

fined only in the regions within the narrow band. Implemen-

tation of this type of technique should further reduce the

computation time required to find the optimal solution.

Although there are numerous deformable algorithms, in-

cluding, for example, the elastic model (32–34), viscous fluid

model (35), optical flow model (5,30,36), finite element

model (33, 37), and radial basis function models such as

the basis spline model (28, 38, 39) and thin plate spline model

(40–43), a truly robust tool suitable for routine clinical appli-
cations is yet to be developed. Each of these approaches has

its pros and cons. The deformable calculation can be greatly

facilitated if some a priori system information can be incor-

porated. Along this line, the homologous correspondence of

the bony structure in two input images has been incorporated

in thin plate spline method, and remarkable improvement has

resulted (44). The narrow band–generated ROI contour cor-

respondence could also be used as prior knowledge to

improve a deformable registration. This work is still in prog-

ress and will be reported in the future.

CONCLUSIONS

In this work we have developed a regional deformable

registration–based method to auto-propagate contours for

4D radiotherapy. The central idea is that a narrow band

encompassing an ROI surface carries the neighborhood in-

formation of the ROI surface and can be used to establish

a reliable association between the ROIs in two phase-specific

image sets. Different from other type of regional algorithms,

such as surface mapping, the method uses the image features

captured in a band to guide the search for the optimal contour

mapping. Compared with conventional deformable image

registration–based approaches, a great reduction in computa-

tional burden and a large capture radius in optimization space

result. Our study demonstrated that the information contained

in the boundary region can be used to guide the contour map-

ping in all the testing cases presented in this article. The pro-

posed regional model decreases the workload involved in

4D-CT ROI segmentation and provides a valuable tool for

the efficient use of available spatial–temporal information

for 4D simulation and treatment planning.
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The medical linear accelerator �linac� integrated with a kilovoltage �kV� flat-panel imager has been
emerging as an important piece of equipment for image-guided radiation therapy. Due to the
sagging of the linac head and the flexing of the robotic arms that mount the x-ray tube and flat-panel
detector, geometric nonidealities generally exist in the imaging geometry no matter whether it is for
the two-dimensional projection image or three-dimensional cone-beam computed tomography. Nor-
mally, the geometric parameters are established during the commissioning and incorporated in
correction software in respective image formation or reconstruction. A prudent use of an on-board
imaging system necessitates a routine surveillance of the geometric accuracy of the system like the
position of the x-ray source, imager position and orientation, isocenter, rotation trajectory, and
source-to-imager distance. Here we describe a purposely built phantom and a data analysis software
for monitoring these important parameters of the system in an efficient and automated way. The
developed tool works equally well for the megavoltage �MV� electronic portal imaging device and
hence allows us to measure the coincidence of the isocenters of the MV and kV beams of the linac.
This QA tool can detect an angular uncertainty of 0.1° of the x-ray source. For spatial uncertainties,
such as the source position, the imager position, or the kV/MV isocenter misalignment, the dem-
onstrated accuracy of this tool was better than 1.6 mm. The developed tool provides us with a
simple, robust, and objective way to probe and monitor the geometric status of an imaging system
in a fully automatic process and facilitate routine QA workflow in a clinic. © 2008 American

Association of Physicists in Medicine. �DOI: 10.1118/1.2885719�
I. INTRODUCTION

The integration of on-board kilovoltage �kV� flat-panel im-
ager to a medical linear accelerator has recently been real-
ized by linac vendors1–4 for image-guided radiation therapy
�IGRT�. These on-board imagers are mounted on robotic
arms with an axis orthogonal to the megavoltage beam.5 An
on-board imager offers three modes of acquisitions namely:
�1� Two-dimensional �2D� planar projection image �radio-
graphic acquisition�; �2� 2D planar fluoroscopic image �fluo-
roscopic acquisition�; and �3� three-dimensional �3D� cone-
beam computed tomography �CBCT�. The radiographic
acquisition is used for 2D-2D matching with the digital re-
constructed radiograph �DRR� for setup verification based on
the bony landmarks or implanted fiducials.1,6 The fluoro-
scopic acquisition is employed for verifying the gating
threshold or target position prior to a respiratory-gated
treatment.7 The CBCT is used for 3D-3D matching with the
planning CT for setup verification.8–11 The geometric infor-
mation of a patient derived from any of these modes relies on
the configuration of the imager geometry, such as the posi-
tion of the x-ray source, imager position and orientation,
isocenter, and focus-to-imager distance. The functionality of
the system depends heavily on the mechanical integrity and
stability of the imaging device �the x-ray tube, imager and
robotic arms� and the linac �on which the imaging system is
mounted� at various gantry angles. This is particularly cru-
cial for the flat-panel based CBCT that is mounted on an

already laden gantry of a linac. The gantry sagging, together
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with the flexing of the imaging system, results in geometric
nonidealities during the gantry rotation in CBCT
acquisition.10,12 The accurate reconstruction of transaxial
slices of a 3D object from a set of 2D projections requires the
x-ray source position and the detector orientation to be
known precisely in 3D space in the rotation trajectory during
the CBCT reconstruction.10,13–15 These geometric parameters
are generally established through a geometrical calibration
process done during the commissioning of the new machine
and incorporated in image formation or reconstruction for
correction.10,16 A prudent use of an on-board imaging system
necessitates a routine surveillance of geometric accuracy of
the system. This echoes to what Yoo et al.17 have pointed out
that the most crucial part of a comprehensive QA program on
an on-board imager would be those tests monitoring the geo-
metric accuracy and stability of the imaging system. The
recommendation by Yoo et al.17 on these tests is based on
imaging a small cube phantom embedded with a central fi-
ducial at orthogonal gantry angles and manually measuring
the discrepancy between the recorded position of the fiducial
and the digital graticule. This method is straightforward yet
subjective due to the manual measurement. Furthermore, it is
unable to give a full picture of the geometric status of the
imaging system.

In research involving micro-CBCT, several geometric
phantoms and associated analysis software have been devel-
oped for the geometric calibration and QA.14,18 A modifica-
tion and an extension of its methodology might be warranted

for the geometric QA of the on-board imaging system. Stud-
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ies have also reported on the use of projection images of
simple phantoms embedded with multiple fiducials to esti-
mate the geometric parameters of the on-board imaging
system,12,19 however the geometric parameters that can be
estimated implicitly from the projection images have not
been fully extracted due to the limitations in the design of the
phantoms or associated data analysis software.

The purpose of the present work is to design a geometric
QA phantom and develop an automated data analysis soft-
ware to assess the geometric accuracy of an on-board imager,
including the x-ray source position, the detector position and
orientation, the isocenter, the rotation trajectory, and the
source-to-imager distance �SID�, from the projection images
of the phantom. The developed phantom and analysis soft-
ware apply equally well to the geometric QA of the MV
electronic portal imaging device �EPID�, and allow us to
measure the coincidence of the isocenters of the MV and kV
beams, which is an important parameter in ensuring that the
treatment beam is targeting to where the imaging is guiding.
The geometric QA procedure using this phantom, together
with the automation of the data analysis, greatly facilitates
the QA workflow and eliminates the subjectivity incurred in
the manual measurement and result interpretation.

II. METHODS AND MATERIALS

II.A. Phantom design

An in-house software developed with the MatLab �Math-
Works, Inc., Natick, MA� was used to simulate the projection
image of an object with designated imaging geometry de-
fined by the position of the source, position and orientation
of the imager, and source-to-imager distance at any gantry
angle. Virtual cubic phantoms �instead of physical phantoms�
of various dimensions from 10 to 25 cm with 9, 13, 17 fidu-
cials arranged in a helical trajectory at the surfaces were
designed. These virtual phantoms served as inputs into the
simulation program to simulate the projection images ob-
tained at different gantry angles. The helical arrangement of
the fiducials was chosen because it gave a good distribution
of the fiducials in 3D space and offered the least superposi-
tion of the fiducials in the projection images obtained from
different gantry angles for easy detection and identification.
Nonuniform helical increments �pitches� along the helical
axis were used to further spare the fiducial projections.

Simulated projection images were created for each virtual
phantom at every 30° of gantry angles. The phantom design,
including the size and fiducial locations, was determined by
maximizing the detection efficiency and sensitivity of fidu-
cials to a change in imaging geometry. Based on the findings
from the simulation, a cubic phantom measuring 18�18
�18 cm3 with 13 steel ball bearings �BBs� of diameter
4.76 mm was fabricated. The BBs were embedded in the
surface of the phantom in a skewed helical trajectory as
shown in Fig. 1. The outside surface of every BB was tan-
gential to the surface of the phantom ensuring that all BBs
were protected from possible displacement or wearing during

setup or handling. Orthogonal lines were scribed on the sur-
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faces of the phantom to indicate the center of the cube at the
intersection of these lines. This phantom was termed as gQA
phantom hereafter for easy reference.

II.B. Reference coordinate system

To describe the geometry of the imaging system, a Carte-
sian phantom coordinate system was introduced. This coor-
dinate system is attached to the phantom and aligned in
space to an ideal linac with a rotating gantry. The z axis is
along the rotation axis of the gantry, the x axis is horizontal,
and y axis is vertical �Fig. 2�a��. The origin is referred to the
intersection of the laser alignments.

For a gantry angle � �which also indicates the x-ray
source angle�, the position of the x-ray source �R ,� ,z� is
conveniently defined in a phantom fixed cylindrical coordi-
nate which has the same origin and z axis of the phantom
coordinate system, where R is the radius of the source rota-
tion circle or the source-to-axis distance �SAD�. A fiducial at
�r ,� ,zB� is projected on the imager �u ,v� �Fig. 2�b�� with

u =
− Fr cos�� − ��
R + r sin�� − ��

, �1�

FIG. 1. The gQA phantom with 13 steel ball bearings �BBs� mounted on the
surfaces in a skewed helical trajectory.

FIG. 2. Schematic representation of the phantom coordinate system �a�, and
the position of the x-ray source and a fiducial in the cylindrical coordinate

system �b�.
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v =
F�zB − z�

R + r sin�� − ��
+ z , �2�

where �u ,v� defines an imager fixed coordinate system
which rotates with the gantry. The imager center is the origin
of the uv plane. The focal distance �F� is the SID. Details on
how to derive Eqs. �1� and �2� are summarized in Appendix
A. Considering the variations ���, �R, �F, �u, and �v� of
the geometric parameters ��, R, F, u, and v�, the projections
become

u + �u =
− �F + �F�r cos�� − �� + ����
�R + �R� + r sin�� − �� + ����

, �3�

v + �v =
�F + �F��zB − z�

�R + �R� + r sin�� − �� + ����
+ z . �4�

Assuming that the imager might be tilted along an imagi-
nary axis p, which is at an angle � with u axis, the imaginary
axes are defined as p and q, respectively, on the uv plane as
shown in Fig. 3�a�. The transformation between coordinates
�p ,q� and �u ,v� is

�p

q
� = � cos��� sin���

− sin��� cos���
��u

v
� . �5�

Further taking the tilted angle � into consideration �Fig.
3�b��, a new axis q� is defined accordingly with

q� = �1 +
q

F
� +

1

2
�2�q . �6�

In obtaining the above equation, it was assumed that the
tilting angle is small ��15° �. Please refer to Appendix B for
the derivation of Eq. �6�.

It follows that the new projected coordinates �uI ,vI� of the
fiducial on a tilted imager are

�uI

vI
� = �cos��� − sin���

sin��� cos���
�� p

q�
�

= �u � + � q
+

��q��− sin��� � . �7�

FIG. 3. Schematic diagram showing the tilting of the imager. The imager
�uv plane� tilts along an imaginary axis p �a� and the tilting angle is defined
as � �b�.
v F 2 cos���
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II.C. Automated analysis software

From a projected image of the fiducials at a given gantry
angle, eight geometric parameters could be quantitatively
evaluated. These are: �1� Three parameters for the x-ray
source position, namely the deviation of the gantry angle
����, the deviation of rotation radius ��R�, and the deviation
from the rotation plane ��z�; �2� three parameters for the
position of the imager center, namely the deviation of the
focal distance ��F�, and the two translational offsets ��u and
�v� in the uv plane; �3� two angular parameters �� and ��
for the imager orientation.

An analysis software in C language was developed to es-
timate the eight parameters at any given gantry angle by
comparing the measured and simulated BB locations in an
iterative manner. The newly adjusted geometric parameters
for the simulated BB location served as the inputs for the
iteration �Fig. 4�. The analysis software first identified and
measured the BB locations �ū , v̄� from the projection image
in the presence of random background noise by intensity
weighted averaging using

�ū =
�iuiIi

�iIi

v̄ =
�iviIi

�iIi

	 , �8�

where Ii was the signal intensity of the pixel number i.20 The
software then determined the geometric parameters by mini-
mizing the difference between the BBs measured and simu-
lated locations from the simulation results based on Eqs.
�3�–�7�. For this purpose, the distance between the positions
of the measured BB and its corresponding simulated BB was
computed. The summation of these distances for all the BBs
was used as the converging criterion for the optimization
process. A hybrid optimization algorithm was adopted for
this eight-parameter nonlinear optimization problem. Ex-
haustive search was applied first and possible solutions were
compared in order to find the best 1000 seeds of parameter
combinations for the simulated annealing algorithm to start
with. Each step of the simulated annealing algorithm re-

FIG. 4. Flow chart showing the algorithm of the analysis software.
placed the current solution by a random “nearby” solution
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chosen with a probability that depends on the difference be-
tween the corresponding function value and a global param-
eter �called the annealing temperature�.21–24 The annealing
temperature gradually decreased during the process. Finally
the progress converged to the best estimate of the geometric
parameters. Figure 5 illustrates several converging curves
during the simulated annealing processes in analyzing a typi-
cal projection. This tool took about half a minute to analyze
one projection image on a personal computer �DELL Preci-
sion 470 Workstation, 3.4 GHz CPU and 4 GB RAM�. Typi-
cally, the sum of square distance differences converged to
about 2.5 mm2. The average discrepancy for one fiducial was
about 0.44 mm �=
2.5 /13�, which was around the size of an
imager pixel.

II.D. Experimental evaluation

The developed gQA phantom and the automated analysis
software �collectively called the gQA tool� were tested on a
Varian Trilogy linac �Varian Medical Systems, Palo Alto,
CA�. The Trilogy is equipped with two image acquisition
systems �IAS3�: �1� MV EPID and �2� kV on-board imaging
system �OBI�. Both systems have a flat-panel detector with a
matrix dimension of 1024�768. The physical pixel sizes of
the MV and kV imagers are 0.392 and 0.388 mm, respec-
tively. The Trilogy is routinely maintained, and all the oper-
ating parameters are monitored and assured through a com-
prehensive QA program as suggested by TG 40.25 The center
of the gQA phantom was positioned at the nominal treatment
isocenter as indicated by the room lasers. The relationship
between the intersection of the room lasers and the mechanic
isocenter of the linac was assumed to be maintained and
calibrated in accordance with the routine QA practice.25

II.D.1. Reproducibility of the analysis
results

Projection images were acquired for MV EPID at a gantry
angle of 0° �Varian convention� and at a SID of 1500 mm,

FIG. 5. Typical optimization converging curves.
the values were nominal. To ensure the gQA tool functions
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properly in the worst-case scenario, the MV EPID was cho-
sen here because the image quality of the MV acquisition
was relatively inferior compared to that of the kV OBI. A
6 MV beam and 25 monitor units were used. The field size
was 26�20 cm2. Twenty-one projections, 1 min apart, were
made with the same imaging geometry and fed into the
analysis software tool to estimate the geometric parameters
of the imaging system. Although the 21 projection images
were acquired under the same condition, they were associ-
ated with different random background noise. The purpose of
this evaluation was to assess the reproducibility of the analy-
sis results under different noisy environments.

II.D.2. Minimum detectable change in gantry angle

With the same setup, four projection images at nominal
gantry angles of 0°, 0.1°, 0.2°, and 0.5° were taken. The
projection images at nominal gantry angles of 0.1°, 0.2°, and
0.5° were subtracted from the one of 0° gantry angle to show
the difference between the projection images made at slightly
different angles. The purpose of this evaluation was to dem-
onstrate the minimum change in gantry angle that could be
detected from the projection image of the BBs.

II.D.3. Gantry angle offset

Further projection images were taken at nominal gantry
angles of 0°, �0.1°, �0.2°, �0.3°, �0.5°, and �1.0°. This
narrow range of gantry angle was chosen because an offset
would affect a small gantry angle more than a large one.
These images were then analyzed. The discrepancies be-
tween the nominal and estimated gantry angles were then
compared in order to determine the gantry angle offset.

II.D.4. SID offset

Projection images were further acquired for MV EPID at
a gantry angle of 180° but at different nominal SID of 1300,
1400, 1500, 1550, and 1600 mm. The best estimate of the
SID was found by the analysis software. The discrepancies
between the nominal and estimated SID were then compared
in order to determine the SID offset.

II.D.5. Imager center offset

With the SID reset to 1500 mm, projection images were
acquired with the imager center at �0, 0� and offset to �20,
20�, �20,−20�, �−20,−20�, and �−20,20� mm in the uv
plane. The best estimate of the detector shift was found by
the analysis software. The discrepancies between the actual
and estimated offsets with and without systematic drift cor-
rection were then compared in order to determine the imager
center offset.

II.D.6. Phantom positional shift

With the imager center reset to the origin, the gQA phan-
tom was displaced −5.0 mm in each of the x, y, and z direc-
tions simultaneously. This was to mimic a condition where
there were spatial drifts in the imaging geometry

��R ,�z ,�F ,�u ,�v� in 3D space. When the phantom posi-
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tion was shifted, the whole imaging system, including the
source and imager position, was shifted in the opposite di-
rection from the phantom’s point of view. Projection images
were then acquired at a SID of 1500 mm with gantry angles
at 0°, 90°, 180°, and 270°. The same set of projection images
was repeated with the phantom displaced 5.0 mm in the
x ,y ,z direction and 10.0 mm in the same direction as well.
The geometric parameters corresponding to these changes
were estimated by the analysis software. The purpose of this
evaluation was to demonstrate the accuracy of the gQA tool
in detecting the variations in the imaging geometry.

II.D.7. Coincidence of the isocenters for the MV and
kV beams

The center of the gQA phantom was repositioned at the
nominal treatment isocenter as indicated by the room lasers.
Projection images were acquired for MV EPID at every 10°
of gantry angle for 360° and at a SID of 1500 mm resulting
in 36 projection images in total. Projection images were also
acquired for the OBI at every 0.56° of gantry angle for 360°
and at a SID of 1500 mm resulting in 640 projection images
in total �i.e. CBCT acquisition mode�. The exposure factors
were 125 kVp, 2 mAs, and the field size was 26�20 cm2 for
the OBI projection image. The eight geometric parameters
for each series of projected images were estimated and the

FIG. 6. Schematic diagram showing a best fitted rotation circle that has the
shortest distances �the least sum distance square� from all the estimated
x-ray sources in 3D space. The center of this circle is taken as the isocenter
of the gantry rotation.

TABLE I. The variations of each of the eight geometric parameters of the im
�R, and �z are the deviations of the gantry angle, rotation radius and devia
the source-to-detector distance, and the two translational offsets of the detec

��
�°�

�R
�mm�

�z
�mm� �

Min. −0.39 −0.69 0.03 −
Max. −0.35 −0.52 0.10 −
Mean −0.37 −0.59 0.06 −
SD 0.01 0.04 0.02
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variation of each parameter for the full gantry rotation was
examined. For each series of data, a best-fitted rotation circle
was found such that it had the shortest distances �the least
sum distance square� from all estimated x-ray sources in 3D
space. The direction of the rotation circle was denoted by the

unit vectors �î , ĵ , k̂�, and its radius �SAD� was calculated. The
rotation circle was taken as the rotation trajectory of the im-
aging system and its center as the isocenter �Fig. 6�. The
isocenters for the MV and kV beams were then found and
compared.

II.D.8. Relationship among various geometric
parameters

A change in one geometric parameter, for instance, the
gantry angle, might affect other parameters of the imaging
system as the whole imaging assembly is mounted on a laden
gantry and robotic arms. There might be a subtle relationship
between these parameters depending on the actual configu-
ration and position of the imaging system. We studied this
issue by scrutinizing the data obtained in Sec. II D 7 in
which the projection images were acquired at different gan-
try angles. The aim was to see the changes in other param-
eters brought by the change in the gantry angle. We limited
the studied range to be in �45° because, beyond this range,
the sagging of the gantry might overwhelm the subtle rela-
tionship amongst the different parameters. Furthermore, we
studied the changes in parameters brought about by the spe-
cific parameter we varied in other evaluations such as in SID
offset and imager off center �Secs. II D 4 and II D 5�. All the
results were compiled in a table to show the changes.

III. RESULTS

III.A. Reproducibility of the analysis results

Table I shows the variations of each of the eight geomet-
ric parameters of the MV imaging system for the 21 projec-
tion images with different background noise. The small stan-
dard deviation of each estimated geometric parameter
indicated a good agreement of the data and the analysis re-
sults were highly reproducible. The imager center offset
��u ,�v� was up to �−0.63 mm,1.67 mm�, which was due to
a systematic drift of the MV imager.

system for the 21 projection images with different background noise. ��,
from the rotation plane, respectively. �F, �u, and �v are the deviations of

the uv plane, respectively; a and � describe the orientation of the imager.

�u
�mm�

�v
�mm�

�
�°�

�
�°�

−0.65 1.63 −0.28 −1.00
−0.61 1.71 −0.11 −0.92
−0.63 1.67 −0.22 −0.98

0.01 0.02 0.05 0.02
aging
tion
tor in

�F
mm�

0.48
0.24
0.37
0.06
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III.B. Minimum detectable change in gantry angle

Figure 7�a� shows the projection image at gantry angle 0°.
Figures 7�b�–7�d� show the image subtractions of the projec-
tion images at the gantry angles 0.1°, 0.2°, and 0.5° from that
at 0°, respectively. From the subtraction images, 9 out of 13
BBs’ locations showed residual values indicating that 4 BBs
were not differentiated by the projections made with small
gantry angle changes and were totally subtracted out. In
other words, there still remained 9 BBs that were “sensitive”
enough to show the gantry change down to 0.1°.

III.C. Gantry angle offset

Figure 8 depicts the correlation of the nominal and esti-
mated gantry angles in the range of �1°. The coefficient of
determination �R2� of 1.00 shows a very good correlation

FIG. 7. �a� The projection image of the gQA phantom at gantry angle 0°.
�b�–�d� show the image subtractions of the projection images at gantry
angles 0.1°, 0.2°, and 0.5° from that at gantry angle 0°, respectively.

FIG. 8. The correlation of the nominal and estimated gantry angles in the

range of �1°.
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between the two angles. From the regression line, a residual
angle offset of 0.37° is evident for the nominal value of the
gantry angle in the range studied.

III.D. SID offset

Figure 9 shows the correlation of the nominal and esti-
mated SID in the range of 1300–1600 mm. The R2 of 1.00
shows an almost perfect linearity between nominal and esti-
mated SID. The regression line indicates that there is a con-
sistent offset of 1.48 mm to the nominal SID in the range
studied.

III.E. Imager center offset

Figure 10 shows the actual and estimated offset positions
of the MV imager center on the �u ,v� imager coordinate
plane. A systematic drift of the detector was noted as ob-
served in the previous evaluation II.D.1. If this systematic
drift was corrected, the net estimated offset positions of the
imager were close to the actual offsets within �1 mm.

III.F. Phantom positional shift

Table II lists the estimated relative shifts of the imaging
geometry for the displaced phantoms with different magni-
tudes of displacement at the four principal orthogonal gantry
angles. Depending on the gantry angle, �R, �z, �F, �u, and
�v reflected the displacement of the phantom in each of the
x ,y ,z directions. The signs of the variations depend on the
relative position between the phantom and the imaging sys-
tem governed by the gantry angle. The maximum discrep-
ancy between the actual and estimated shift was less than
1.6 mm �1.6= �10−8.4��, which came from the differences

FIG. 9. The correlation of the nominal and estimated source-to-imager dis-
tance �SID� at a gantry angle of 180°.
between phantom shift of 10 mm and the estimated �R.
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III.G. Coincidence of the isocenters for the MV and kV
beams

Table III lists the variation of each of the eight geometric
parameters estimated for the MV EPID and kV OBI for a
complete gantry rotation. The standard deviation of each es-
timated geometric parameter for the MV EPID and kV OBI
were small indicating a good agreement of the same geomet-
ric parameter at different gantry angles. The orientations of
the MV and kV rotation plane were found to be �0.00010,
0.00006, 1.00000� and �0.00030, 0.00001, 1.00000�, respec-
tively. The estimated isocenters for the MV and kV beams
were at �−0.95,−0.84,−0.25� mm and �−0.97,−1.21,
−0.13� mm in the reference coordinate. The coincidence of
the two isocenters was well within 0.5 mm.

FIG. 10. The estimated shift ��� and estimated shift after the correction of
the systematic drift ��� compared to the actual offset of imager center ���
on the �u ,v� imager coordinate plane.

TABLE II. The estimated relative drifts of the imaging geometry for the d
orthogonal gantry angles. �R, �z, and �F are the deviation of the rotation
distance, respectively. �u and �v are the two translational offsets of the de

Phantom shift
�mm�

Gantry angle
�°�

�R
�mm�

�x=−5.0
�y=−5.0
�z=−5.0

0 3.7
90 4.5

180 −4.2
270 −4.6

�x=5.0
�y=5.0
�z=5.0

0 −5.6
90 −4.5

180 5.4
270 4.9

�x=10.0
�y=10.0
�z=10.0

0 −8.4
90 −9.2

180 8.4
270 9.9
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III.H. Relationship among various geometric
parameters

Table IV lists the changes of geometric parameters of the
imaging system brought about by the specific parameters
varied in different evaluations. A change in one specific pa-
rameter could, to a certain extent, cause changes in other
parameters depending on the actual configuration or the po-
sition of the imaging system, however, these changes were
small and assumed not to affect the results of the experimen-
tal evaluations.

IV. DISCUSSION

We have designed a geometric QA phantom tailoring to
an automated analysis to successfully estimate the geometric
parameters of an on-board imaging system with a reasonable
accuracy. The size of the phantom and the helical arrange-
ment of the fiducials on the surface ensure the projected po-
sitions of the fiducials are well spaced on a detector area at
any gantry angle for easy detection and identification. In
principle, the more the number of the fiducials is, the more
information that can be extracted for estimating the geomet-
ric parameters, but there will be higher chances of superpo-
sition among the fiducial projections. There is a trade-off
between the number of fiducials and the minimum distance
between the fiducial projections. Based on the result from the
evaluation II.D.2, we concluded that 13 BBs were adequate
for the present application and this gQA tool can detect an
angular uncertainty of 0.1°.

Concerning the analysis software, the direct relationship
between the 2D projected position of a fiducial and the ide-
alized geometric parameters of an imaging system was used
in an optimal manner for determining the geometric param-
eters. Theoretically, eight equations �from four fiducials’ 2D
projections� might be enough to solve this type of eight-
parameter problem in a perfect mathematical model. In real-
ity, the system is not perfect and several imperfect factors
might occur: �1� The x-ray source is not a real geometry

ed phantoms with different magnitudes of displacement at four principal
, deviation from the rotation plane and deviations of the source-to-detector
in the uv plane, respectively.

�z
�mm�

�F
�mm�

�u
�mm�

�v
�mm�

−5.4 −0.2 4.6 5.3
−5.1 0.0 −3.9 5.4
−5.4 −0.2 −4.5 5.3
−5.6 0.1 4.0 5.2

4.6 0.0 −4.6 −4.8
4.8 0.0 5.6 −4.8
4.8 −0.2 4.7 −4.8
4.7 0.2 −5.5 −4.8
9.7 0.0 −9.7 −9.9

10.2 0.2 8.6 −9.8
10.4 −0.3 9.5 −9.6
8.9 −0.4 −8.4 −10.4
isplac
radius
tector
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point and has a finite size, which leads to geometric penum-
bra; �2� the accuracy of the spatial location of the fiducial is
limited by measurement; and �3� the imager pixel has a finite
size and is associated with noise. These imperfections render
us to summon more equations in solving the problem. This
proposed analysis tool takes all fiducial projections into ac-
count in the optimization. In addition, Eqs. �3�–�7� indicate
that this is a nonlinear problem and multiple local minima
might possibly coexist with the global minimum. While it is
not clear whether the estimation results from some image-
based optimization approaches19 would be trapped in the lo-
cal minimum, we adopted to use a global optimization algo-
rithm of simulated annealing for our software to ensure a
global minimum is always achievable. Moreover, the exhaus-
tive search at the beginning of the process warrants well-
distributed seeds for the simulated annealing and, in turn,
saves optimization time significantly.

We have evaluated the gQA tool by estimating the geo-
metric parameters of the imaging system under various im-
aging geometries. The results were highly reproducible and
showed that the developed tool was responsive to all the
changes introduced in the evaluation such as SID, detector
offset, and phantom shift. The best estimates of these spatial
parameters in different situations were well within 1.6 mm.

The estimation of the rotation plane and the isocenter by a
series of projection images of the gQA phantom through a
full gantry rotation is extremely useful in monitoring the
geometric parameters pertinent to the flat-panel based CBCT
and the coincidence of the MV and kV beams. We found that
the coincidence of the MV/kV beam isocenters were 0.5 mm

TABLE III. The variations of each of the eight geometric parameters of the
rotation. ��, �R, and �z are the deviations of the gantry angle, rotation ra
deviations of the focal distance, and the two translational offsets of the dete

��
�°�

�R
�mm�

�z
�mm�

MV Min. −0.4 −1.2 −0.8
Max. 0.0 2.7 0.1
Mean −0.2 0.5 −0.3
SD 0.1 1.4 0.3

kV Min. −0.3 0.2 −0.8
Max. 0.1 4.9 0.2
Mean −0.1 2.2 −0.2
SD 0.1 1.5 0.3

TABLE IV. The changes of geometric parameters of the imaging system brou
�z are the changes in the gantry angle, rotation radius and distance from the
and the two translational offsets of the imager in the uv plane, respectively

Evaluation
Parameter

varied
Range
varied

��
�°�

�

�m

II.D.4 SID 1300–1600 mm 0.01 1.
II.D.5 Imager

off center
�20 mm 0.00 0.

II.D.7 Gantry
angle

�45° ¯ 0.
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comparable to the value of 0.8 mm which was obtained by
the routine OBI QA exercise on the Trilogy. Comparing to
the existing OBI QA exercise, our tool is more comprehen-
sive giving a full picture of the geometric status and details
on the rotation trajectories of both the x-ray sources �MV/
kV� and their orientation of the rotation planes. Yoo et al.17

pointed out that their recommendation did not include a
separate geometric QA measurement for the OBI CBCT, the
developed tool would be a good choice to fill it this gap
because of its simplicity, easy implementation and full auto-
mation of the analysis.

Just like any other phantom-based QA studies,13–15,19 one
limitation of the present work lies on the mechanical impre-
cision in the positions of the BBs since the simulation of the
BBs position assumes a perfect alignment of the BBs in the
designated skewed helical trajectory. The BBs in the present
gQA phantom are accurate to within 0.5 mm in their desig-
nated position and is considered adequate for the current ap-
plication.

A simple guideline is recommended here on how to use
this gQA tool in a clinic. First, set up the phantom to the
room lasers, which is used to provide a reference to the room
coordinates. A level can be used or even embedded in the
phantom to assure its geometric setup. Second, kV and/or
MV projection images are acquired at a designated angle.
Each �kV or MV� imaging system is described by the eight
geometric parameters. To obtain the eight parameters of the
imaging system �kV or MV� at a designated angle, in prin-
ciple, a single projection measurement at that angle is suffi-
cient. Last, the projection image is fed to the analysis soft-

kV imaging systems from projections acquired through a complete gantry
nd deviation from the rotation plane, respectively. �F, �u, and �v are the
in the uv plane, respectively.

�F
�mm�

�u
�mm�

�v
�mm�

�
�°�

�
�°�

−2.3 −1.0 1.3 −0.3 −1.4
2.5 −0.5 2.2 0.3 −0.6
0.2 −0.8 1.7 0.0 −1.0
1.8 0.2 0.3 0.2 0.2

−2.2 −1.2 1.3 −0.3 −2.4
2.3 0.9 2.5 0.4 −0.7

−0.1 −0.1 1.9 0.0 −1.3
1.6 0.7 0.4 0.2 0.5

bout by the specific parameters varied in different evaluations. ��, �R, and
on plane, respectively. �F, �u, and �v are the changes of the focal distance,
d � describe the changes in the tilting of the imager.

�z
�mm�

�F
�mm�

�u
�mm�

�v
�mm�

�
�°�

�
�°�

0.08 ¯ 0.23 0.75 0.34 0.13
0.08 0.12 ¯ ¯ 0.61 0.25

0.05 0.50 0.02 0.06 0.13 0.05
MV/
dius a
ctor
ght a
rotati
; � an

R
m�

06
27

28
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ware to calculate the geometric parameters. A more
comprehensive approach would be acquiring the projections
during a continuous gantry rotation �kV CBCT/MV arc mode
delivery�. In that case, the geometric parameters at different
gantry angles could be evaluated. Furthermore, the isocenters
of the imaging system could also be calculated by the soft-
ware if three or more projections are available.

V. CONCLUSIONS

A new geometric QA phantom and an automated analysis
software have been developed to estimate the geometric sta-
tus of a MV or kV on-board imager. This provides us a
simple, robust and objective way to probe and monitor the
geometric status of an imaging system in a fully automatic
process, and facilitate routine QA workflow in a clinic.
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APPENDIX A: DERIVATION OF THE FIDUCIAL
LOCATION „U ,V…

When the x-ray source S �R ,� ,z� is at a gantry angle of
�, an arbitrary object A�r ,� ,zB� is projected to C on imager
u axis centering at D. Figure 11�a� provides a 2D view on an
xy plane where the source S locates �z�. A��r ,� ,z� is the
projection of A on this plane. Using the similar triangle re-
lationship between the triangles SA�B and SCD, we have

FIG. 11. Geometric relationship between a fiducial’s 3D position and its
projection on the imager.
Eq. �A1�
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�CD�
�A�B�

=
�SD�
�SB�

, �A1�

while �A�B�=r cos 	 is the distance from A� to the projection
central line �SO�� and SD is the source-to-imager distance
�F�. SB is the distance from source to the projection on the
central line. It is calculated by Eq. �A2�

�SB� = R + r sin 	 , �A2�

given

	 = �BA�O� = �A�O�S − �A�BO�

= ��� +



2
� − �
 −




2
= � − � . �A3�

So we have

�CD� = F
�A�B�

R + r sin 	
=

Fr cos�� − ��
R + r sin�� − ��

or

u =
− Fr cos�� − ��
R + r sin�� − ��

.

The negative sign was added due to the definition of u axis.
A side view perpendicular to the beam axis is shown in

Fig. 11�b�. Now A� and B are overlapped on this view. Based
on the similarity between triangles SAB and SGD, the mag-
nification factor is

�DG�
�AB�

=
�SD�
�SB�

while �AB�= �AB��− �SS��=zB−z, �SD�=F, �SB�=R+r sin 	.
So the projection on the v axis is

v = �GH� = �DG� + z =
F�zB − z�

R + r sin�� − ��
+ z .

APPENDIX B: DERIVATION OF THE TILTED AXIS
q�

After a tilting of �, the projection at Q moved to Q�, and
the coordinate on q axis becomes a coordinate on q� axis. As

FIG. 12. Schematic diagram showing the tilting of the imager upon the p
axis.
shown in Fig. 12, from the triangle KQQ�, we have
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�KQ�
sin��Q�QK�

=
�KQ��

sin��QQ�K�
.

Because

�Q�QK = 
 − �� +



2
� − � =




2
− �� + ��

and

�QQ�K =



2
+ � ,

so

q�

q
=

�KQ��
�KQ�

=

sin�


2
+ ��

sin�


2
− �� + ��� =

cos���
cos�� + ��

.

Use small angle approximation, cos����1−1 /2�2 and
cos��+���1−1 /2��+��2,

q�

q
�

1 −
1

2
�2

1 −
1

2
�� + ��2

� �1 −
1

2
�2
�1 +

1

2
�� + ��2


� 1 + �� +
1

2
�2.

Approximately, ��q /F.
So

q� � �1 + �� + 1
2�2�q .
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Intrafraction organ motion can limit the advantage of highly conformal dose techniques such as
intensity modulated radiation therapy �IMRT� due to target position uncertainty. To ensure high
accuracy in beam targeting, real-time knowledge of the target location is highly desired throughout
the beam delivery process. This knowledge can be gained through imaging of internally implanted
radio-opaque markers with fluoroscopic or electronic portal imaging devices �EPID�. In the case of
MV based images, marker detection can be problematic due to the significantly lower contrast
between different materials in comparison to their kV-based counterparts. This work presents a fully
automated algorithm capable of detecting implanted metallic markers in both kV and MV images
with high consistency. Using prior CT information, the algorithm predefines the volumetric search
space without manual region-of-interest �ROI� selection by the user. Depending on the template
selected, both spherical and cylindrical markers can be detected. Multiple markers can be simulta-
neously tracked without indexing confusion. Phantom studies show detection success rates of 100%
for both kV and MV image data. In addition, application of the algorithm to real patient image data
results in successful detection of all implanted markers for MV images. Near real-time operational
speeds of �10 frames /sec for the detection of five markers in a 1024�768 image are accom-
plished using an ordinary PC workstation. © 2008 American Association of Physicists in Medi-
cine. �DOI: 10.1118/1.2905225�

Key words: fiducial tracking, IGRT, image guidance
I. INTRODUCTION

Modern conformal radiation therapy techniques, such as
intensity-modulated radiation therapy �IMRT�, can provide
radiation doses that closely conform to the tumor dimensions
while sparing sensitive structures.1,2 To be optimally effec-
tive, these techniques require a high geometric precision in
both tumor localization and patient treatment setup. The
presence of inter and intrafraction organ motion uncertainties
can therefore reduce the benefit of using a highly conformal
radiotherapy technique. For instance, intrafractional respira-
tory or prostate based tumor motion can lead to tumor dis-
placements up to 2–3 cm over the course of routine
radiotherapy.3–9 The use of image-guided radiation therapy
�IGRT� is a promising candidate to ensure proper targeting in
radiation treatment deliveries.10 Due to the dynamical nature
of human anatomy, it is most advantageous when IGRT can
be performed in real-time in order to ensure an accurate de-
livery of the planned conformal dose distribution.11

Several methods of obtaining real-time tumor position are
available, and these can be categorized as being either indi-
rect �external surrogate-based� or direct �fiducial/image� in
nature. In general, indirect tumor location methods, such as
external skin marker tracking or breath monitoring tech-
niques, rely on the correlation between external body param-
eters and the tumor.5,12 In reality, the relationship between

external parameters and internal organ motion is complex

1942 Med. Phys. 35 „5…, May 2008 0094-2405/2008/35„5…/
and a large uncertainty may be present in predicting the tu-
mor location based on external signals. A direct tumor posi-
tion measurement is therefore highly desirable for therapeu-
tic guidance. In the last decade, a number of direct real-time
3D tumor tracking methods have been implemented, prima-
rily using fluoroscopy5,11,13 or magnetic field localization.14

In addition, the feasibility of using an electronic portal im-
aging device �EPID� and stereoscopic x-ray imaging for tu-
mor tracking has been explored.3,5,6,15–26

To be clinically useful, an internal marker tracking algo-
rithm should reliably segment markers from varying com-
plex anatomic image backgrounds, be able to track multiple
markers simultaneously without indexing confusion, and be
able to operate at near real-time speeds. Generally, marker
segmentation algorithms based on pixel intensity tend to fail
when markers are in the vicinity of high contrast structures
such as bone. A more reliable solution is the use of template
matching, as demonstrated by Shirato et al., in the tracking
of a spherical gold marker using multiple kV fluoroscopic
imaging systems.25 Tang et al. further extended the template
matching technique to include detection of cylindrically
shaped markers on an in-house built stereoscopic kV imag-
ing system.27 In their algorithm, the user first manually lo-
cated and defined a region of interest �ROI� around each
marker and determined the orientation of every cylindrical
marker, and then a template matching algorithm was applied

to the ROIs. The normalized cross correlation between the

19421942/8/$23.00 © 2008 Am. Assoc. Phys. Med.
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template and correlate pixels was calculated for every pixel
and the highest cross correlation yielded the marker location.
The detection failure rate for their method could be up to
12%.

As of yet, few works have presented algorithms suitable
for tracking internal markers reliably using MV image data.18

This is a consequence of the low inherent contrast between
different materials in MV based images, making image based
marker detection difficult.

This work proposes a novel pattern matching algorithm
specifically designed to work with both kV and MV imaging
systems. Unlike previous algorithms reported by Shirato
et al. and Tang et al. where only the cross correlation is used
for marker detection, this algorithm employs a criteria sys-
tem based not on only the correlation score, but also the
scaling factor and their combination. This is found to allow
100% successful marker detection rates, even on low con-
trast MV images. This algorithm is highly desirable since it
can combine MV imaging with kV fluoroscopy imaging to
locate real-time 3D tumor position during the actual radio-
therapy process, as recently demonstrated by Wiersma
et al.28 Unlike other tracking techniques, which require two
or more kV sources for 3D marker positioning,3,5,6,25–27,29

this technique has the inherent benefit in that only one kV
source is required for full 3D marker geometric information
since the actual MV treatment beam is also used for position-
ing.

II. MATERIALS AND METHOD

II.A. Hardware setup

A Varian Trilogy �Varian Medical System, Palo Alto, CA�
operating in the 6 MV photon mode was used for the study.

FIG. 1. Varian Trilogy with kV and MV imagers in extended positions. The
system’s frame of reference is denoted by arrows. A head phantom is located
on the couch.
Images of the MV beam were acquired by an aSi EPID
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�PortaVision aS-500, Varian Medical System, Palo Alto, CA�
attached to the LINAC, as shown in Fig. 1. The kV imaging
was accomplished using the onboard imaging system located
perpendicular to the treatment beam �Fig. 1�. The kV imag-
ing system consisted of a 125 kV x-ray tube together with an
aSi flat panel imager �PaxScan 4030CB, Varian Medical Sys-
tems, Salt Lake City, UT�. Pixel sizes of the kV and MV
detectors were 0.388 mm and 0.392 mm, respectively. Both
detectors had a resolution of 1024�768, corresponding to an
effective area of detection of approximately 40 cm�30 cm.
The source-to-axis distances �SAD� were set to 100 cm and
source-to-imager distances �SID� were set to 150 cm for both
MV and kV systems �Fig. 1�.

The markers used were either stainless steel ball bearings
�BB� or gold �Au� cylinders. The BB diameters varied from
1.57 mm to 4 mm, whereas the Au cylinders were 1.2 mm in
diameter and 5 mm in length �North West Medical Physics
Equipment, MED-TEC Company, Orange City, IA�. Effi-
ciency of the algorithm in segmenting markers from complex
anatomical image background was tested using a head phan-
tom �Fig. 1�. The cylindrical fiducials were internally embed-
ded into the phantom, whereas BBs were mounted externally
on the phantom.

II.B. CT based region-of-interest definition

Prior planning CT knowledge can provide valuable

FIG. 2. �a� Flow chart algorithm computational path. �b� To the right is
shown the eight-bin orientation segmentation filter, �c� spherical pattern, and
�d� a cross section pattern for a vertical cylindrical marker.
marker information that can be used to reduce the marker
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search space. Reduction of search space in turn removes un-
necessary image processing resulting in increased fiducial
detection speeds. As displayed by the flow diagram in Fig. 2,
a simple intensity based search for the markers was initially
done on the planning CT. Due to the large CT numbers of the
metallic markers relative to other anatomical structures, the
markers were easily segmented from the image background.
The displacement vector relating the CT isocenter to the
treatment isocenter was then used to transform the marker
CT coordinates to that of the treatment isocenter such that
each marker was given a 3D position �xB ,yB ,zB� relative to
the machine isocenter. The expected projection location
�u ,v� of each marker on either the kV detector or the EPID
can then be predicted by the following relationships

u = F
cos���xB + sin���yB

R − sin���xB + cos���yB
, �1�

v = F
zB

R − sin���xB + cos���yB
, �2�

where � was the gantry angle, R was SAD, and F was SID.
As seen in Fig. 1, the x-axis was in the lateral direction of
patient couch, the y-axis was in the anterior-posterior direc-
tion, the z-axis was the superior-interior direction, and the
origin was the LINAC’s isocenter. The coordinates of the
imagers were defined in the �u ,v� plane in Fig. 1.

Having located the expected positions of the marker pro-
jections, the search region was reduced to a small circular
ROI around each marker projection center. Typically, a ROI
with a radius of 75 pixels on the imager, or about 2 cm
around the fiducial position, was found to be adequate in
locating the marker. For markers located near each other,
overlapping ROIs would be grouped together. The fiducial
search was then performed group by group in order to avoid
redundancy.

II.C. Marker orientation

With a cylindrical marker of fixed length �l� and width
�w�, the unsymmetrical shape could lead to a host of differ-
ent possible projection images depending on the marker’s
particular orientation relative to the source/imager setup. Pa-
rameters subject to variation were the marker’s projection
length and orientation �from 0° –180°�. The marker projec-
tion length might vary from “1.5*w” �if the projection direc-
tion was along its longitudinal direction� to “1.5*1” �if the
projection direction was perpendicular to its longitudinal di-
�i,j��Pattern
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rection� with an amplification factor of 1.5 �=SID /SAD�. To
take into account the different possible orientations, the 180°
rotation was divided into a number of bins, as shown in Fig.
2�b�. As seen in the figure, each of the eight bins represented
two possible opposite directions, such that each bin covered
an angle of 22.5°. The center of this orientation filter was
placed on each pixel in a ROI group, and all adjacent pixels
from the center pixel were then grouped into eight bins cor-
responding to their particular angle. The average intensity of
each bin was computed and the bin with the highest number
was taken as the orientation of the center pixel. It should be
noted that the orientation results carried no information for
most of the pixels and it was only valid for pixels on a
cylindrical object. The eight-bin pattern was chosen based on
the limited pixel resolution of a projected marker. Due to the
small marker size, a detected projection was composed of a
limited number of pixels and therefore mosaic in nature
�typically with a width of �5 pixels and a length of �20
pixels or less�. Therefore, for small angles of rotation, only a
few pixels would change. Using bin numbers greater than
eight generally did not lead to a more accurate angle deter-
mination since now the pixel noise could be the deciding
factor in a particular angle bin.

II.D. Pattern matching algorithm

Different patterns were used for spherical and cylindrical
markers. Due to rotational symmetry, a simple spherical
marker pattern �Fig. 2�c�� was universally used for all BBs
with the same physical diameter. For cylindrically shaped
markers, a trapezoidal pattern �Fig. 2�d�� was used. The ra-
tionale behind this pattern was that even though a cylindrical
marker projection might undergo a wide variety of rotational
and length changes, the signal intensity distribution along the
cross section of the cylinder projection remained constant.
This cross section had a unique trapezoidlike pattern that was
experimentally found to be dependent on the marker’s width,
but independent of projection length. Searching for these
unique cross-sectional patterns along the orientation of every
pixel in each ROI allowed for identification of fiducials.

Depending on the sought-after marker, either a spherical
or cylindrical cross-sectional pattern �pi,j� is used for the
matching procedure. At each pixel location �x ,y� within a
ROI group, a comparison was made between the pattern and
the surrounding pixels ��fx+i,y+j��. Two basic criteria were
calculated: the square of the correlation coefficient Rx,y

2 and
the scaling factor H
x,y
Rx,y
2 =

��i,j��Pattern
�fx+i,y+j − fx,y��pi,j − p̄�

	��i,j��Pattern
�fx+i,y+j − fx,y�2 · 	��i,j��Pattern

�pi,j − p̄�2
, �3�

Hx,y =
��i,j��Pattern

�fx+i,y+j − fx,y��pi,j − p̄�

� �pi,j − p̄�2
, �4�
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where fx,y was the average intensity of the pattern region
around pixel �x ,y� and p̄ was the average intensity of the
pattern distribution as given by

fx,y =
1

N
�

�i,j��Pattern
fx+i,y+j , �5�

p̄ =
1

N
�

�i,j��Pattern
pi,j , �6�

with N being the total pixel number of the pattern. The
square of the coefficient of correlation �R2� for a linear re-
gression could vary from 0 �no correlation� to 1 �perfect
correlation�. The scaling factor H indicated the relative in-
tensity of the object compared to the background. As an ex-
ample, in an ideal case, the image was scaled from the pat-
tern after a background shift, fx+i,y+j=k ·pi,j+b, where k and
b were constants. The pattern matching result would be Rxy

2

=1 and Hx,y=k.
Because the cylindrical cross sectional pattern is unable to

determine correct marker lengths, it was necessary to group
adjacent qualified cross sections and reconstruct their overall
lengths. If the calculated length was found to be longer than
the maximum projection length, the feature would be re-
jected. Here the maximum projection length was defined by
multiplying the actual physical marker length by the imager
magnification factor �=1.5� plus a reasonable margin.

II.E. Marker identification

With multiple markers it was easy to confuse the indi-
vidual marker labeling for kV or MV projections at different
gantry angles. The simplest case was when only one marker
exists in each ROI group. From Eqs. �1� and �2� there was a
direct correlation of the ROI group to a specific marker. In
the case of multiple markers existing in the same ROI group,
the detected marker positions in this ROI group were corre-
lated to the planning CT markers corresponding to this ROI
group, while indexing was based on the shortest distances
between detected and predicted marker projections by using
Eqs. �1� and �2�. At certain gantry angles, it was possible that
two or more markers may be projected on the same �u ,v�
location. In this case the number of detected markers in the
ROI group would be fewer than the number of expected
markers, indicating projection overlapping. This was re-
solved by comparing the measured to the predicted projec-
tions. If one or more of the projections was found missing,
but was calculated to be in close proximity to another
marker, this projection would be double counted.

II.F. Experimental validation and patient data analysis

To evaluate the algorithm’s efficiency when markers over-
lap or near different anatomical structures, a 360° gantry
rotation was performed around a head phantom. Images were
acquired every 0.56° for the kV imager ��640 images in
total� and every 10° with the MV imager �36 images in to-
tal�. Having obtained the projection locations for each

marker, 3D spatial information could be calculated by using
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projections at different gantry angles together with Eqs. �1�
and �2�. Particularly, the results from pairs of MV and kV
projections were calculated.

As a preliminary test, this algorithm was also applied to
actual patient images previously acquired for patient setup
by onboard MV EPID. Five prostate patients with implanted
cylindrical fiducial markers were treated in the past two
years. Every patient had two or three fiducials �with a diam-
eter of 1.2 mm and a length of 3 mm� implanted. They were
treated on a conventional LINAC with MV EPID only. A
total of 196 MV projection images were acquired for patient
setup at anterior/posterior �AP� and lateral �LAT� directions
before every treatment fraction. After all images were ana-
lyzed, the 3D spatial positions were calculated from every
pair of AP and LAT images based on Eqs. �1� and �2�.

An in-house software �C language� was specified to ana-
lyze projection images and obtain fiducial positions. All cal-
culations were performed on a Dell Precision 470 worksta-
tion �3.4 GHz Xeon CPU and 4 GB RAM�.

III. RESULTS

As a demonstration of the orientation and cross-sectional
pattern matching, a MV image of a head phantom with five
embedded cylindrical markers was examined �Fig. 3�a��. For
a selected marker enlarged in Fig. 3�b�, the eight-bin orien-
tations are shown in Fig. 3�c�. As can be seen, for pixels
located around the fiducial, the �45° angle was favored,
corresponding to the actual projection orientation. Having
determined the orientation, a 90° rotation was made and the
marker’s cross section was segmented from the image back-

FIG. 3. �a� MV image of a head phantom with embedded Au cylindrical
fiducial. �b� On the right shows magnified image of the selected marker
displaying orientation and cross section �dotted line�. �c� Orientation map
with pixel intensity corresponding to adjacent intensity orientation for the
selected marker. �d� Segmented cross-section. �e� Application of the cross-

section pattern.
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ground �Fig. 3�d��. Then the cross-sectional pattern at 45°
orientation �Fig. 3�e�� was applied to calculate Rx,y

2 and Hx,y.
Figure 4 is a side-by-side comparison of the kV and MV

detection process for five cylindrical Au markers embedded
in a head phantom. The kV and MV images were acquired at
a MV gantry angle of 220°. It should be noted that the on-
board kV x-ray source is always rotated 90° relative to the
MV source �Fig. 1�. Application of the algorithm uses prior
planning CT information to first define the ROI for each
fiducial, as shown by the circular highlighted regions in Figs.
4�a� and 4�b�. After ROIs were defined and grouped, orien-

FIG. 4. Side-by-side kV �left column�/MV �right column� comparison of
marker detection for five gold markers embedded in a head phantom. �a� and
�b� Projection image and the predicted BB ROIs were highlighted, �c� and
�d� R2 results �threshold applied�, �e� and �f� scaling factors �threshold ap-
plied�, and �g� and �h� searching index=R2* scaling factor.

TABLE I. Variation of FM 3D positions calculated from MV/kV pair project

FM #1 FM #2

x y z x y z

Mean −22.9 22.3 −17.2 20.7 24.1 0.0
Max−Mean 0.7 0.7 0.3 0.4 0.6 0.4
Min−Mean −0.6 −0.7 −0.3 −0.7 −0.6 −0.3 −
Standard Dev 0.4 0.4 0.2 0.3 0.4 0.2
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tation and pattern matching were applied to each ROI group
and resulted in only image data that conformed to the cross-
sectional pattern �Figs. 4�c�–4�f��. The scaling of the ROIs
led to greater background image segmentation for the kV
case �Fig. 4�e�� over the MV case �Fig. 4�f��. The product of
the scaling factor H and the correlation R2 led to complete
segmentation of the markers, as displayed in Figs. 4�g� and
4�h�. In this case a threshold of 0.6 and 0.006 for R2 and H,
respectively, were determined by previous trials and used
through all our analyses.

Both kV and MV projections were analyzed using our
detection algorithm, where it was found that all five markers
were correctly detected for every kV and MV projection.
Figure 5 plots the �u ,v� coordinates on both the kV and MV
detectors for one of the markers. Spatial positions of every
marker were calculated for all MV projection images with
their corresponding kV partner images gathered over the
360° gantry rotation. Table I summarizes these results, where
it can be seen that the standard deviation of the location is
better 0.5 mm and the errors are within 1 mm.

All patient images were analyzed similarly. In all cases
the detection success rate was 100%. Figure 6 displays AP
�left column� and LAT �right column� images of three mark-
ers embedded in a prostate. Three-dimensional positions of
markers were calculated from pairs of AP and LAT projec-
tions. Figure 7 shows a fiducial marker’s various 3D posi-
tions for 14 fractions. It should be noted that those images
were taken at the beginning of patient setup and these posi-
tions were not yet the treatment position.

FIG. 5. Projection locations of one cylindrical fiducial on kV and MV im-
ages as functions of kV and MV gantry angles, respectively.

at 36 different gantry angles.

FM #3 FM #4 FM #5

y z x y z x y z

−31.9 2.5 −17.3 −32.7 22.7 19.5 22.8 30.4
0.6 0.3 0.6 0.7 0.3 0.5 0.6 0.6

−0.6 −0.3 −0.8 −0.8 −0.4 −0.7 −0.9 −0.4
0.4 0.2 0.4 0.4 0.2 0.3 0.4 0.2
ions

x

2.5
0.5
1.0
0.4
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In the case for symmetrical markers such as BBs, the
algorithm can be easily modified by using the spherical pat-
tern, as shown in Fig. 2�c�. This detection is more simplistic
compared to cylindrical marker detection since the BB pro-
jection image is independent of the BB’s orientation. More
than 2000 combined kV and MV projection images were
made of four spherical BB markers �Fig. 8�. For all images
the algorithm was able to successfully detect the markers.

IV. DISCUSSION

The continued advancement of medical imaging technol-

FIG. 6. Analyzing five cylindrical fiducials in a prostate patient MV image
at AP �left column� and LAT �right column� directions. �a� and �b� DRR
images, �c� and �d� Projection image and the predicted BB ROIs were high-
lighted, �e� and �f� R2 results �threshold applied�, �g� and �h� scaling factors
�threshold applied�, and �i� and �j� searching index=R2* scaling factor.
ogy is reaching the stage where procurement of high reso-
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lution anatomical images can be acquired rapidly and with
low diagnostic dosages. In addition, utilizing the actual MV
treatment beam for imaging has the potential to further re-
duce diagnostic doses. These various imaging modalities
pave the way for real-time IGRT. For the tested projection
images, the algorithm demonstrates high successful detection
rates together with near real-time speeds. As seen in Figs. 4,
6, and 8, reliance on only R2 can lead to false positive marker

FIG. 7. 3D spatial position of a fiducial in a prostate patient before treatment
setup at 14 treatment fractions.

FIG. 8. Analyzing four BBs on kV �left column� and MV �right column�
images. �a� and �b� Projection image and the predicted BB ROIs were high-
lighted, �c� and �d� R2 results �threshold applied�, �e� and �f� scaling factors

2*
�threshold applied�, and �g� and �h� searching index=R scaling factor.
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detection, especially for MV based projections. The combi-
nation of these two criteria resulted in 100% success detec-
tion rates for all 3500 images kV or MV projections ana-
lyzed. It is important to emphasize that multiple markers
could be successfully tracked on MV images.

Fast marker detection is a crucial component of real-time
image based tracking. This algorithm quickens the search
process in two aspects. First, the orientation and cross-
sectional pattern matching for cylindrical markers simplifies
the problem due to cylindrical orientation and projection
length, which would otherwise require a large number of
patterns to be tested.27 Secondly, the search space is signifi-
cantly reduced by incorporating prior CT marker location
knowledge. For a typical 1024�768 image with five cylin-
drical markers, the processing time is reduced from �1 s to
0.1 s upon incorporating ROI selection. For fewer markers
this time would be reduced even further. Generally, spherical
marker detection requires approximately half the computa-
tional time as compared to detecting the same number of
cylindrical markers. In addition, this process is completely
automated and does not need any manual location initializa-
tions, which is another asset.

Currently, the EPID imager used in this study is hardware
limited to a maximum frames-per-sec �fps� rate of �7.5 fps.
It is, however, envisioned that as future faster kV and MV
detectors become available, the algorithm’s detection time
can be further reduced. In general, the maximum clinically
seen velocity of a tumor is �4.0 cm /s �respiratory based�.
With the current 7.5 fps imaging speed this would corre-
spond to a between frame marker travel distance of
�0.5 cm. This distance is small in comparison to the 2 cm in
radius ROI used for detection. To increase computational
speeds it is beneficial to reduce the search space defined by
the ROI. This could be accomplished by recalculating a new
0.5 cm in radius ROI for each new frame analyzed. The lo-
cation of this ROI would be centered on the marker’s loca-
tion in the previous frame, thus ensuring that the marker is
located within the ROI.

As demonstrated in Fig. 5, the orthogonal location of the
kV imager relative the MV imager allows for calculation of
the 3D position of the markers from the isocenter. Although
this current work consists of retrospective analysis, it is ex-
pected that this tracking algorithm can provide real-time 3D
tracking in such a system. This is especially convenient on
treatment systems pre-equipped with kV and MV onboard
imaging equipment as it should only require minimal hard-
ware changes, thus being a cost effective solution for imple-
menting IGRT.

V. CONCLUSION

Fast and reliable localization of implanted metallic fidu-
cials of various shapes has been an important yet challenging
problem in kV stereoscopic image guided RT. This problem
is further aggravated by much reduced image contrast when
MV beam imaging is involved for therapeutic guidance. A
new pattern matching algorithm has been proposed to track

multiple spherical or cylindrical fiducial markers on both

Medical Physics, Vol. 35, No. 5, May 2008
MV and kV projection images. A completely automated de-
tection, 100% detection efficiency, and fast detection speed
�10 frames /sec� enable tracking tumor motion in real-time
on a LINAC with both kV and MV imaging systems. This
algorithm makes it a suitable candidate for future image-
guided radiosurgical procedures.
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Purpose: To report the characteristics of prostate motion as tracked by the stereoscopic X-ray images of the im-
planted fiducials during hypofractionated radiotherapy with CyberKnife.
Methods and Materials: Twenty-one patients with prostate cancer who were treated with CyberKnife between
January 2005 and September 2007 were selected for this retrospective study. The CyberKnife uses a stereoscopic
X-ray system to obtain the position of the prostate target through the monitoring of implanted gold fiducial
markers. If there is a significant deviation, the treatment is paused while the patient is repositioned by moving
the couch. The deviations calculated from X-ray images acquired within the time interval between two consecutive
couch motions constitute a data set.
Results: Included in the analysis were 427 data sets and 4,439 time stamps of X-ray images. The mean duration for
each data set was 697 sec. At 30 sec, a motion >2 mm exists in about 5% of data sets. The percentage is increased to
8%, 11%, and 14% at 60 sec, 90 sec, and 120 sec, respectively. A similar trend exists for other values of prostate
motion.
Conclusions: With proper monitoring and intervention during treatment, the prostate shifts observed among pa-
tients can be kept within the tracking range of the CyberKnife. On average, a sampling rate of �40 sec between
consecutive X-rays is acceptable to ensure submillimeter tracking. However, there is significant movement varia-
tion among patients, and a higher sampling rate may be necessary in some patients. � 2008 Elsevier Inc.

CyberKnife, Prostate cancer, Fiducial markers, Real-time tracking.
INTRODUCTION

Recent randomized studies for patients with localized pros-

tate cancer confirm that improved biochemical failure-free

survival was achieved by using higher doses of external

beam radiotherapy (RT) (1–3). Although a higher dose is

good for tumor control, it also carries greater risk of compli-

cations to surrounding critical structures, such as the bladder

and rectum (4). Because of the inter- and intrafractional mo-

tion of the prostate, margin is required when planning a pros-

tate radiotherapy. Knowing the extent of prostate movement

during a fractionated, and more important a hypofractionated,

treatment is necessary to reduce the treatment margin and

facilitate prostate dose escalation (5, 6). A number of tech-

niques have been developed for measuring setup variations

and internal organ motion for individual patients from day-

to-day and during a treatment fraction (7).

Ultrasound has been a useful tool for prostate target localiza-

tion (8–10). Fung et al. (8) analyzed the data of 7,825 daily

fractions of 234 prostate patients and indicated average three-
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dimensional (3D) interfractional displacement of about

7.8 mm. Electronic Portal Imaging Device, on-board kV X-

ray imaging, or both of implanted fiducials is also widely

used for initial setup and interfractional monitoring of the pros-

tate target position (11–17). A recent development in measuring

setup variations is the electromagnetic positioning and contin-

uous monitoring system from Calypso Medical Technologies

(Seattle, WA) (18–20). The difference between skin marks

vs. the Calypso System alignment was found to be >5 mm in

vector length in more than 75% of fractions. Displacements

>3 mm and 5 mm for cumulative durations of at least 30 sec

were observed during 41% and 15% of sessions, respectively.

At our institution, CyberKnife (Accuray, Sunnyvale, CA)

has been employed for Phase II hypofractionated treatment of

prostate cancer. Through frequent stereoscopic X-ray imag-

ing of implanted fiducials, the CyberKnife provides an effec-

tive way to monitor the position of the prostate target during

a hypofractionated treatment (21). The system records the

center of mass (CM) of implanted fiducials as computed
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from each pair of stereoscopic images during each treatment,

thus providing a valuable set of data to better understand the

intrafractional movement of the prostate. In addition to the

technical difference in monitoring the implanted fiducials,

a major feature of our data is that the time span of tumor

motion monitoring is significantly longer compared with

the Calypso data (up to 2,500 sec with a mean duration of

about 700 sec vs. 600 sec for Calypso). This study sheds use-

ful insight into features of intrafractional prostate motion and

reemphasizes the need for an effective means of compensat-

ing the intrafractional prostate movement to ensure adequate

dose coverage of the tumor target.

METHODS AND MATERIALS

CyberKnife data acquisition
During hypofractionated prostate radiation treatment, fiducials

must be rigidly fixed no more than 5–6 cm relative to a known ref-

erence or to the tumor. Any fiducial migration will degrade the

accuracy of fiducial-based targeting. Commonly, three fiducials

are used for prostate cancer treatment.

The patient setup and treatment delivery process is illustrated in

Fig. 1. First, orthogonal X-ray images are acquired before treatment.

The system determines the absolute position of the target volume via

image-to-digitally reconstructed radiograph registration. The three-

dimensional translation and rotation deviation of the target from the

planned position is calculated. The deviation is corrected by manu-
ally moving the treatment couch. The treatment starts if the com-

puted shift is less than a preset threshold, 10 mm in general.

During treatment, the robot automatically adjusts the incident

beam to compensate for the target deviation. The CyberKnife sys-

tem can perform up to 10 mm translational correction. However,

the larger the deviation, the greater is the uncertainty in the accuracy

of the robot correction. Therefore it is recommended that the devia-

tion during treatment be kept to a minimum. At Stanford Hospital,

a threshold of �5 mm translation is normally used. During the

beam delivery, X-ray images are acquired every three nodes, which

amounts to about a 40-sec interval. The shift of X-ray images from

the planning CT is monitored in real time. If the calculated shift is

more than the given threshold, the treatment will be paused, and

manual couch movement is required until the shift is below the limit.

Patient selection and prostate motion data analysis
The patients were treated with hypofractionated protocol consist-

ing of five fractions of 7.25 Gy per fraction delivered every other

day. In total, 21 prostate cancer patients were treated under the pro-

tocol between January 2005 and September 2007 for the study. In

our analysis, one fraction can generate more than one data set

because the treatment is usually paused a few times to reposition

the patient by couch movement. The couch displacement is not

kept in treatment log-file, and therefore the data sets before and after

the intervening couch movement cannot be joined together without

manually writing down the couch shifts during the treatment

process.
Calculate shift Δx

Δx is more than
threshold?

Move couch

Start treatment

 Periodic X-ray

Δx is more than
threshold?

Last node?

END

No

Yes

Yes

No

Yes

Planning DRR Stereoscopic  X-ray

No

Pause treatmentX-ray

Fig. 1. Flowchart of the patient setup and delivery process in CyberKnife treatment. DRR = digitally reconstructed radio-
graph.
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After patient treatment, a log-file containing the CM displace-

ments of the fiducials in anterior–posterior (AP), left–right (LR),

and superior–inferior (SI) directions is saved in the CyberKnife con-

trol computer and can be readily used for the analysis of prostate

movement during the beam delivery process. In addition, files con-

taining the rigid body error (RBE) data of each implanted fiducial

are recorded at each timestamp in the Accuray CyberKnife System.

The RBE at a timestamp is defined as the distance of a fiducial from

its corresponding CT position after the system figures out the best

translation and rotation transformation by a rigid registration of

the projection images and the CT-generated digitally reconstructed

radiographs. For the 21 patients studied here, we first analyzed the

statistical characteristics of the collected time duration data sets.

This analysis provides valuable information on the average time it

takes for the prostate to reach the preset threshold. The CM displace-

ment log-files acquired during the treatment course were then stud-

ied and the overall and patient-specific behaviors of prostate

displacement were investigated.

Study of prostate deformation
The RBE values mentioned earlier were employed to gain an

understanding of prostate deformation. In general, the intrafrac-

tional motion of prostate consists of rigid and deformable motions.

The rigid motion of the prostate is characterized by the CM displace-

ment of the three implanted fiducials and any potential rotation. In

principle, it is possible to estimate the prostate rotation on the basis

of the angular change of the fiducial configuration. However, the

prostate rotation is generally small and negligible. We have there-

fore focused our study on translation and deformable motions of

the prostate. To a certain extent, the deformation can be described

by the RBE values and the correlation between RBE curves of the

three implanted fiducials. In an ideal case in which there is no defor-

mation, the RBE should be zero, and the three time-dependent RBE

curves would correlate completely. The correlation between three

fiducials was computed for four representative cases.

Influence of X-ray image sampling rate
A clinically important question in stereoscopic image-guided

prostate treatment is the optimal X-ray imaging frequency. Here

the optimal imaging frequency is defined as the frequency that min-

imizes patient exposure while not missing any significant movement

Fig. 2. Histogram of the time span of the studied data sets.
of the target during the beam-off interval of the imaging X-ray (22).

To better understand the issue, we investigated the consequence of

down-sampling the X-ray imaging data for one of the patients.

RESULTS

Duration of data sets
For the 21 patients, 4,439 timestamps, which constitute

427 separate data sets, were recorded. Figure 2 shows the his-

togram of the duration of the 427 data sets. The bin size is

200 sec, and the mean duration is 697 sec. The duration of

a data set represents the time for the prostate to move beyond

an acceptable level to the therapist (�5 mm shift for prostate

at our institution). Thus a shorter duration corresponds to

a more prominent prostate movement. The data here suggest

that on average it takes 697 sec for the prostate to move

beyond 5 mm relative to its planned position.

Overall behavior of intrafractional prostate motion
A useful way to present prostate motion data is to show the

histogram of the fiducial CM movement in different direc-

tions. As seen in Fig. 3, the prostate is more stable in the

LR direction, which is consistent with pelvic and prostate

anatomy. Generally, the shift distribution in the SI direction

is similar to that in the AP direction. The mean shift in each

direction, averaged over all patients, was 1.55 � 1.28 mm,

Fig. 3. Histogram of the fiducial center of mass (CM) movement in
different directions. AP = anterior–posterior; LR = left–right; SI =
superior–inferior.

Table 1. Statistical characterization of the 427 data
sets for each direction (SI, LR and AP) and the

vector length of the shift (length)

SI LR AP Length

Average (mm) 1.55 0.87 1.80 2.61
SD (mm) 1.28 1.17 1.44 1.94

Abbreviations: AP = anterior–posterior; LR = left–right; SI =
superior–inferior.
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Fig. 4. Histogram of the prostate movement as a function of time duration and shift.
0.87 � 1.17 mm, 1.80 � 1.44 mm in SI, LR, and AP direc-

tions, respectively. The average vector length of the shift is

2.61 � 1.94 mm. Table 1 summarizes the statistical charac-

terization of the data for each direction and the vector length

of the shift. It should be emphasized that these mean values

were specific to the 5-mm threshold used in fiducial tracking

because the greater-than-threshold shifts were reset by man-

ual couch adjustments. It therefore does not represent the

mean magnitude of prostate motion during a complete treat-

ment fraction.

An alternative way to present the data in Fig. 3 is to illus-

trate the histogram of the prostate movement as a function of

time duration and shift, as shown in Fig. 4. Each color repre-

sents a specific time segment. It is clear that as time elapses,

the spatial distribution of the prostate becomes increasingly

spread out. From these plots, it is also clear that SI and AP

movements are similar, whereas the LR curve is more con-

centrative.

A rolling average (23) of total movement distance was

computed in equal time-interval stamps to illustrate further

the prostate movement tendency, as shown in Fig. 5. Because

the average image acquisition interval is �40 sec and using

the Nyquist sampling theory (24), a time interval of 20 sec

was used to calculate the rolling average curve. The rolling

average window was set to be 120 sec. Thus the average shift
at 0 sec is a result of shifts from 0 to 60 sec, and the average

shift at 100 sec represents the contributions from 40 to 160

sec. Because there are not enough data for rolling average

calculation at the end of the time duration, the calculation

stopped at 1400 sec in Fig. 5. The curve in Fig. 5 represents

Fig. 5. Rolling averages of prostate center of mass (CM) move-
ment.
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Fig. 6. Patterns of prostate movement: (a) stable target at baseline, (b) continuous drift, (c) transient excursion, (d) persis-
tent excursion, (e) high-frequency excursion, and (f) irregular movement (red: superior/inferior [SI] direction; green: left/
right [LR] direction; blue: anterior/posterior [AP] direction; black: vector length of the shift).
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Fig. 7. Prostate movement behaviors for one of the patients in different data sets (red: superior/inferior [SI] direction;
green: left/right [LR] direction; blue: anterior/posterior [AP] direction; black: vector length of the shift).
a logarithmic fit of the data. It can be seen that the prostate

movement increases against time.

Patient-specific behavior of intrafractional prostate motion
The motion of the CM of the three implanted fiducials is

used as a surrogate of prostate motion. This quantity was re-
corded over time and analyzed for the 427 data sets (on aver-

age 20 data sets per patient). For illustration, a selection of six

typical patterns of motion categories is shown in Fig. 6a–6f.

The x axis represents the timestamp, and the y axis is the mo-

tion shift. Similar to those observed by Kupelian et al. (18),

these patterns vary from stable positioning at baseline
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Fig. 7. Continued
(Fig. 6a), continuous drift (Fig. 6b), transient excursion

(Fig. 6c), persistent excursion (Fig. 6d), and high-frequency

excursion (Fig. 6e). Some patterns are simply too irregular to

categorize into any of these classes (Fig. 6f).

It should be noted that for each patient, the prostate move-

ment pattern may change from fraction to fraction or even

from data set to data set within the same treatment fraction.

Figure 7 shows the prostate movement behavior for one of

the patients. This patient received five treatment fractions,

and each fraction contains two data sets. Data sets 2, 4, and

5 are the continuous drift; data set 3 is the transient excursion;

data sets 1, 7, and 8 consist of two continuous drifts; data sets

6 and 9 are high-frequency excursions followed by a stable

positioning at baseline; and data set 10 shows a continuous

drift followed by a stable positioning at baseline. These

data suggest that the prostate intrafractional motion is some-

what random and does not follow a fixed pattern.

Influence of prostate deformation
Prostate deformation is of a practical concern. In Fig. 8, the

RBE curves for each fiducial are plotted for four representa-

tive patients. The RBE value is generally within 1.5 mm, in-
dicating that the deformation of the prostate is not a major

issue here. Furthermore, as listed in Table 2, the correlation

coefficients between RBE curves of the three implanted fidu-

cials were found to be close to 100%. Although the fiducial

movement profiles differ among patients, the motion behav-

iors of three fiducials for each patient are similar, indicating

that no prominent deformation occurred in these cases.

Optimal image sampling rate
To understand the influence of the X-ray image sampling

rate, we extracted a fraction of movement from one of the pa-

tients as shown in the solid line of Fig. 9a. Now suppose that

the images are acquired at every other timestamp in the orig-

inal acquisition schedule; the prostate movement curve

would look quite different, as indicated in the dashed line

of Fig. 9a. Figure 9b is another example of CM movement

curve captured by two sampling rates. The peak in the solid

curve revealed by a higher sampling rate disappears when

the sampling rate is reduced. It is difficult to guarantee that

there is no peak value in a relatively long sample interval.

However, more frequent real-time imaging, which provides

more accurate correction to the treatment robot, would result
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Fig. 8. Rigid body error curve of three fiducials for four representative patients (red: Fiducial 1; green: Fiducial 2; blue:
Fiducial 3).
in longer treatment time and an increase in patients’ normal

tissue dose.

In reality, a few factors may influence the selection of the

sampling rate of the X-ray imaging, including the dose rate,

patient-specific characteristics, the fractionation scheme,

and so on. Therefore a trade-off between imaging frequency

and target position accuracy must be made. A rule of thumb is

that the movement of the prostate within the interval of two

consecutive images should be less than a prespecified crite-

rion, say 1 or 2 mm. Because of the randomness of prostate

movement, this decision can only be made on a statistical ba-

sis. The sampling rate should be chosen in such a way that the

number of data sets with displacement exceeding a prespeci-

Table 2. Correlation coefficients between three fiducials
for four representative cases

Patient 1 Patient 2 Patient 3 Patient 4

Fiducials 1 and 2 96.2% 97.7% 94.9% 97.8%
Fiducials 1 and 3 96.9% 98.2% 98.4% 99.2%
Fiducials 2 and 3 976% 97.0% 98.1% 98.8%
fied motion range should be statistically small. Figure 10

shows a plot of the percentage for the prostate target to

move more than 1 mm, 2 mm, 3 mm, 4 mm, 5 mm, ., at

30 sec, 60 sec, 90 sec, 120 sec.. This figure is useful in help-

ing to find the suitable sampling rate for a prespecified pros-

tate motion range. For example, if motion greater than 2 mm

is permissible for less than 5% of the data sets (in other

words, if maintaining 95% of the data sets at a motion <2

mm is desirable), from Fig. 10, it is seen that a 30-sec sam-

pling interval should be used. If a 60-sec interval is used,

7.5% of the data sets will have a motion greater than 2

mm. For 90-sec and 120-sec intervals, the percentage with

motion greater than 2 mm will increase to 11% and 14%, re-

spectively. For convenience, the percentage of data sets with

motion greater than 1 mm to 5 mm is summarized in Table 3

for a few sampling intervals of interest.

DISCUSSION

To cope with the uncertainty in patient setup and tumor tar-

get localization, a commonly used method is to add a popula-

tion-based safety margin to the target and to sensitive
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adjacent structures to ensure adequate dose coverage, which

significantly compromises the success of radiation therapy

(25). Because of the proximity of the prostate to the rectum

and bladder, a robust strategy in locating the tumor target is

necessary if the radiation dose to the prostate is to be esca-

lated to enhance the probability of curing patients without

damaging adjacent structures. A detailed knowledge of pros-

tate motion would help us to understand the nature and de-

gree of the adverse influence of the uncertainty and provide

guidance in dealing with this issue. The known motion pat-

terns can also be included into inverse planning process to

minimize its adverse dosimetric influence.

It is important to bear in mind that the proposed method re-

lies on the assumption that the markers accurately reflect the

position of the prostate. In other words, the implanted

markers do not migrate significantly within the prostate dur-

ing the course of treatment. Pouliot et al. (26) studied the is-

Fig. 9. Prostate movement behaviors depicted by stereoscopic im-
aging of two sample rates for two patients. (a) Patient 1, (b) Patient
2. CM = center of mass.
sue by analyzing the orthogonal portal images of 11 patients.

The distances between three markers were determined and

monitored over the course of therapy to assess the magnitude

of marker migration. The average standard deviation of the

distances was found to be 1.3 mm. Similar observations

were made by Poggi et al. (27), Nichol et al. (1), and Shirato

et al. (28).

The prostate deformation study presented here is estima-

tive in nature, primarily because the RBE and the correlation

between RBE fiducial curves for each patient are less quanti-

tative in assessing the organ deformation. However, it is

a useful quantity and sheds practical insight onto the prob-

lem. A more thorough study based on biomechanical mea-

sures of the prostate deformation as a function of time is

highly desirable to understand the issue completely.

There are several drawbacks associated with fiducial-

based image-guided prostate radiation therapy. Other than

the fact that it involves an invasive procedure of fiducial im-

plantation, the fiducial tracking used with CyberKnife or the

Calypso system is limited to ‘‘rigid’’ tumors. Although our

data indicated that the deformation of the prostate gland dur-

ing the hypofractionated treatment is small and the CM of the

three implanted fiducials can be used to describe the prostate

position, it is important to remember that tracking the prostate

is only part of the overall task in prostate radiation therapy. In

reality, tracking the motion of various adjacent sensitive

structures represents the other side of the coin and is also

Fig. 10. Percentage of data sets for the prostate target as a function
of sample interval and movement threshold.

Table 3. Percentage of data sets having a movement
threshold from 1 to 5 mm for a few sampling

intervals of interest

Prostate Movement Threshold

Sampling interval 1 mm 2 mm 3 mm 4 mm 5 mm

30 10.5% 4.4% 2.3% 1.9% 1.2%
60 19.0% 7.5% 4.2% 3.2% 1.9%
90 30.2% 10.8% 6.6% 3.5% 2.6%
120 39.3% 13.8% 8.4% 4.9% 2.8%
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of critical importance to the success of image-guided radiothe-

raphy. Therefore, knowing the spatial location and geometric

shapes of the sensitive structures is critical to customizing the

dose distribution to maximize the dose to the target while

sparing the adjacent sensitive structures. On a fundamental

level, the motion of the prostate target is often caused by

the motion or physiological change of sensitive structures.

This study, and most if not all similar studies, have focused

on prostate-only treatment. Clinically, the treatment of inter-

mediate- and high-risk prostate cancer often involves the ir-

radiation of seminal vesicles and regional lymph nodes.

The implanted fiducials in these cases are less helpful in lo-

cating the seminal vesicles and pelvic nodes. A better imag-

ing method capable of providing three-dimensional anatomy

would be highly desirable. On-board cone-beam CT (CBCT)

has recently become available to provide volumetric informa-

tion of a patient in the treatment position (29). It holds prom-

ises for improved target localization and irradiation dose

verification (30). CBCT is valuable in providing 3D or

even 4D patient model before treatment and affords a useful

solution to reduce the adverse effect of interfractional organ

motion (22, 31–34). However, acquiring real-time patient

geometric information during radiation delivery using an on-

board imaging device is still impractical. A combined use of

pretreatment patient geometric model derived from 3D/4D
CBCT and real-time stereoscopic X-ray projection data

may be useful to estimate the location of target organs and ad-

jacent sensitive structures. This investigation is still in prog-

ress and will be reported in the future.

CONCLUSION

Intrafractional organ motion has long been recognized as

one of the major limiting factors of prostate dose escalation

in conformal radiation therapy. A detailed knowledge of

prostate motion would help us to understand the nature and

degree of the adverse influence of such motion and provide

guidance in dealing with it. Known motion patterns can

also be included in the inverse planning process to minimize

the adverse dosimetric influence of motion. Our study shows

the importance of real-time image guidance and motion-com-

pensation techniques such as the robotic linear accelerator

used in CyberKnife during hypofractionated prostate radia-

tion treatment. Given the magnitude and random nature of

prostate motion as well as recent technical advancements in

various related fields, real-time monitoring of prostate posi-

tion to compensate for the motion should be part of future

prostate radiation therapy to ensure adequate dose coverage

of the target while maintaining adequate sparing of adjacent

structures.
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The purpose of this work is to develop a novel feature-based registration strategy to automatically
map the rectal contours from planning computed tomography �CT� �pCT� to cone beam CT
�CBCT�. The rectal contours were manually outlined on the pCT. A narrow band with the outlined
contour as its interior surface was then constructed, so that we can exclude the volume inside the
rectum in the registration process. The corresponding contour in the CBCT was found by using a
feature-based registration algorithm, which consists of two steps: �1� automatically searching for
control points in the pCT and CBCT based on the features of the surrounding tissue and matching
the homologous control points using the scale invariance feature transformation; and �2� using the
control points for a thin plate spline transformation to warp the narrow band and mapping the
corresponding contours from pCT to CBCT. The proposed contour propagation technique is applied
to digital phantoms and clinical cases and, in all cases, the contour mapping results are found to be
clinically acceptable. For clinical cases, the method yielded satisfactory results even when there
were significant rectal content changes between the pCT and CBCT scans. As a consequence, the
accordance between the rectal volumes after deformable registration and the manually segmented
rectum was found to be more than 90%. The proposed technique provides a powerful tool for
adaptive radiotherapy of prostate, rectal, and gynecological cancers in the future. © 2008 Ameri-
can Association of Physicists in Medicine. �DOI: 10.1118/1.2975230�

Key words: image guided radiation therapy �IGRT�, image registration, deformable model,

segmentation, scale invariance feature transformation �SIFT�
I. INTRODUCTION

Patients treated with radiotherapy for cancers such as pros-
tate, rectal, and gynecological cancers experience large day-
to-day changes in their rectal volumes due to motion, disten-
tion, and filling. Due to variations in the image content, an
exact correspondence between two image sets acquired at
different time points may not exist. Thus, any deformable
model relying on the use of information contained in the
entire image may not be adequate in dealing with these pa-
tients. The artifacts-induced disjoint between the images also
makes the autopropagation of contours outlined in one set of
images to another highly difficult with conventional strate-
gies. With continued enthusiasm for adaptive radiotherapy,
the ability to reliably and efficiently map the rectum outlined
in the planning computed tomography �CT� �pCT� to the
on-treatment cone beam CT �CBCT� images now becomes a
bottleneck and needs to be resolved in order for many pa-
tients with cancer within the pelvis to benefit from the novel
adaptive replanning strategy.1,2

The issue of rectal motion and deformation in conformal
radiation therapy is described in various publications. Lee et
al. evaluated the CBCT as a tool to quantify the accuracy and
precision of a simulated IMRT treatment delivery model for
rectal cancer when rectal motion due to filling and deforma-
tion was taken into account.3 The mean deformation varia-

tion of 0.71 and 0.94 cm in the LAT and AP directions was
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reported. Foskey et al. shrank the rectal gas region to a vir-
tual point in order to make the correspondence of the rectal
volumes in two sets of images.4 Gao et al. used an automatic
image intensity modification procedure to create artificial gas
pockets in the pCT images.5 The major drawbacks of these
types of approaches are the artificial introduction of image
features within the rectal volume and the potentially inaccu-
rate association of the artificial image features. As a conse-
quence, the accordance between the rectal volumes after de-
formable registration and the manually segmented rectum
was found to be less than 80%.

In this work, we propose to use the image information in
the neighborhood outside the rectal wall as the driving force
to guide the rectal contour propagation from the pCT to
CBCT. Because the content in the region outside the rectal
wall should be conserved, regardless of any changes in the
rectal filling and distension, this strategy seems to be physi-
cally sensible. Coupled with a powerful feature-based de-
formable registration model, which identifies homologous
tissue features shared by the pCT and CBCT images, the
novel approach captures the key issues of the system and
provides a natural solution to the above stated problem. Ap-
plication of the proposed algorithm to a number of digital
phantoms and clinical cases demonstrates that the technique
is accurate and robust and may be useful for future adaptive

therapy planning.
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II. METHODS AND MATERIALS

II.A. Software platform

The proposed contour mapping algorithm was imple-
mented using the Insight Toolkit6 and the Visualization Tool-
kit �VTK�,7 which are open source cross-platform C�� soft-
ware toolkits sponsored by the National Library of Medicine.
They are freely available for research purposes �see Refs. 34
and 35�. ITK provides various basic algorithms to perform
registration and segmentation for medical images. The pro-
grams contained in ITK are highly extendable, making it an
ideal platform for development of image registration and
processing techniques. VTK is primarily used for image vi-
sualization �including contours�.

II.B. Narrow band construction

Inconsistency in rectal contents between two input image
sets could severely reduce the performance of a deformable
registration algorithm. Coregistering an empty rectum with-
out bowel gas to a rectum filled with bowel gas using any
deformable model could be problematic, for example. A
natural strategy is to exclude the volume inside the rectal
wall. In practice, the template rectal contour in the pCT im-
age has been manually contoured as a part of the routine
treatment planning process, thus making it a straightforward
matter to exclude the volume inside the rectal wall. Figure 1
shows the proposed contour mapping process. After manual
segmentation on the pCT, a narrow band as sketched in Fig.
2 is constructed with the manually segmented rectum repre-
senting the inner surface of the band. On an axial slice, the
contour has a polygon shape and the vertices of the polygon
form the basis for constructing the narrow band. The distance
between the neighboring vertices on the contour is typically
2–10 mm depending on the shape of the contour. In gener-

Planning CT CBCT

Deformation field

CBCT contourPlanning CT contour

Auto-detected control points in two images

Determination of control points pairs using the SIFT method

TPS deformable transformation

Manual segmentation

Narrow band construction

FIG. 1. Overall process of rectal contour propagation.
ating the narrow band, we first create squares with side
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length of d for each vertex, as depicted by points A and B in
Fig. 2�b�. In order to obtain a smooth band, between A and B
three more squares, cornered at points C, D, and E, are in-
serted. Point C is chosen to be the middle point between A
and B. Point D is the point between A and C, and point E is
the point between B and C. More interpolated vertex points
can be similarly introduced to obtain a smooth band. The
principle of the narrow band diameter selection is to exclude
most bony structures outside the narrow band, since the bony
structures are rigid and heavily affect the control point selec-
tion. Meanwhile, the generated narrow band can capture suf-
ficient information to drive the finding of its counterpart in
the subsequent CBCT. In general, the size of the squares is
therefore within 1 cm, so that the diameter of the narrow
band is within 1.5 cm.

The narrow band in our approach is used as a compact
representation of the rectal surface. As will be detailed in the
next subsection, a feature-based deformable registration al-
gorithm is employed to find the correspondence of the band
in the CBCT images. Upon successful registration, the defor-
mation field is utilized to propagate the pCT contour to the
CBCT. Because only the image features outside the rectum
are used, a narrow band shown in Fig. 2 permits us to take
advantage of the regional information inside the narrow band
yet avoiding the nuisance of rectum/bladder filling.

II.C. Feature-based warping of the narrow band

As illustrated in Fig. 1, the process of contour mapping is
to warp the narrow band constructed above in such a way
that its best match in the CBCT images is found. Mathemati-

Contour

Narrow band

A
D

dB

C
E

(b)

FIG. 2. A sketch of narrow band. �a� A narrow band image surrounding a
manually segmented rectal contour and �b� a narrow band construction is
illustrated for two vertex points A and B.
cally, this constitutes an optimization problem, in which a
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group of transformation parameters transform the points
within the band in the pCT to their corresponding points in
the CBCT. The input to the contour mapping software in-
cludes the narrow band and the CBCT images, which are
described by the image intensity distributions Ia�x� and
Ib�x�, respectively.

To find the transformation matrix, T�x�, that maps an ar-
bitrary point in the band to the corresponding point in the
CBCT images �or vice versa�, a thin plate spline �TPS� de-
formable model is employed. But other models should also
be applicable to model the deformation of the band. We au-
tomates the control point selection by using the scale invari-
ance feature transformation �SIFT� tissue feature searching
�see next subsection for details�. Roughly, 300 control points
are selected based on the prominent tissue features.

The detailed description of the TPS transformation can be
found in Ref. 8. For two-dimensional �2D� images, a weight-
ing vector W= �w1 ,w2 , . . . ,wn� and the coefficients a1 ,au ,av
are computed from a series of matrices which are constructed
using n pairs of selected control points in the fixed image
�xi ,yi� and in the moving image �ui ,vi�, respectively. The
function transforming a pixel coordinate in the moving im-
age to a new coordinate in the fixed image is defined as

f�u�,v�� = a1 + auu + avv + �
i=0

n

wiU��pi − �u,v��� , �1�

where pi is the control points coordinate in the fixed image
and U is a basis function to measure the distance.

II.D. SIFT

The feature-based deformable registration is an essential
part of the proposed contour mapping process. Here, we au-
tomate the control point selection by using the SIFT-based
tissue feature searching. Because of the efficient use of
a priori system knowledge, the approach greatly enhances
the robustness of the narrow band warping algorithm.

The SIFT method was introduced by Lowe to characterize
the local tissue features. The method utilizes both image in-
tensity and local gradient information to characterize the
neighborhood property of a point.9 The algorithm includes
scale-space extrema detection, control point localization, ori-
entation assignment, and control point descriptor. In 2D
cases, for example, the method uses the orientation histo-
grams of the four quadrants surrounding a point �containing
64 pixels� to characterize the inherent tissue feature of the
point �see Fig. 3�. To obtain the histogram for a quadrant, as
illustrated in Fig. 3, the gradient of each of the 16 pixels in a
quadrant is computed. An eight-bin histogram, with first bin
representing the number of pixels whose gradients fall be-
tween 0° and 45°, and so forth, is then constructed. For il-
lustration, the histogram of each of the four quadrants is
displayed schematically in the right panel of Fig. 3 as an
eight-vector plot. In total, 32 vectors are calculated in 2D
case. In extending the SIFT method from 2D to three dimen-

sional �3D�, total of 192 vectors are needed. These vectors
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represent the local feature and serve as a signature of the
point. The SIFT descriptor is considered as one of the most
effective descriptors currently available.10,11

Theoretically, the SIFT descriptor can be computed for
each voxel in an image. However, this is computationally
expensive. The commonly used sampling strategy is to com-
pute the descriptor every 2–3 voxels in x, y, and z directions.
After the SIFT descriptors are computed in both input im-
ages, the points having the most similar SIFT descriptors in
the two images are then identified. For a given point, indexed
by n, in the pCT image, the least-squares difference of the
SIFT descriptor of the point and that of a potential associa-
tion point n� in the CBCT, Sn,n�, is first computed according
to

Sn,n� =��
�=1

k

���In�� − ��In����2, �2�

where I represents the image intensity. � indexes the bins of
the SIFT histogram of a point and the summation over � runs
from 1 to 32 for the 2D case, and 1 to 192 for the 3D case.
Typically, about 1000 SIFT descriptors n ,n� are computed in
the narrow band in the pCT and CBCT, respectively. It is
unnecessary to determine Sn,n� for all possible combinations
n ,n�, which may dramatically increase the calculation time.
We use a specific search radius to control the number of Sn,n�
calculation. The mapping results are more accurate with
larger search radius, however, the calculation time of SIFT
mapping becomes longer. After Sn,n� is computed, two points
n1� and n2� that have the least histogram difference with point
n are identified. If the ratio �for convenience, the ratio is
referred to as the � ratio hereafter� of these two values is less
than 80%, the point that has the least S value is chosen ten-
tatively as the correspondence of the point n, otherwise, no
association is made for the point. The � ratio varies between
0 and 1 and is an empirical measure of feature correspon-
dence between two images. The lower the � ratio, the “stron-
ger” the association of the two feature points on pCT and
CBCT. Because of the inherent difference in the textures of
the involved organs, the determination of the � ratio may be

FIG. 3. A sketch of orientation histogram in SIFT method. The gradient of
each of the 16 pixels in a quadrant is computed. An eight-bin histogram,
with first bin representing the number of pixels whose gradients fall between
0° and 45°, and so forth, is then constructed. The histogram of each of the
four quadrants is displayed schematically in the right panel as an eight-
vector plot.
organ specific. Typically, it is determined by a tradeoff be-
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tween the number of associated point pairs and the reliability
of the associations. For a bone, the feature is clear and hun-
dreds point pairs can be associated under a threshold of 50%.
On the other hand, for the rectum, the feature is not as ob-
vious as bone. If we still use this low � ratio, the number of
association pairs may be very limited. In this situation, a
higher threshold, say 80%, is usually used to increase the
number of associated point pairs.

To further increase the accuracy of feature point associa-
tion, a bidirectional mapping strategy is developed based on
the fact that if a point in the pCT is mapped correctly to the
CBCT, it will be default to be mapped back to the original
point in the pCT when an inverse map is applied to the
corresponding point in the CBCT. Therefore, after the origi-
nal association of feature points as described above, the
mapped points in CBCT are inversely coregistered to the
pCT. If the correspondence still exists, the associated point
pair is labeled a match. Otherwise, they are considered as a
mismatch and deleted from the list of correspondence points.
Upon the association of the feature points, the associated
points are employed as control points. The control point in
pCT and CBCT corresponds each other, thus the numbers of
control points in the two input images are the same. It was
noticed that, when the CBCT region of interest �ROI� is ex-
panded, the increase of feature point generation does not
affect the control point association and final contour map-
ping. The coordinates of an arbitrary point on the contour in
CBCT are obtained by interpolating the displacement vectors
of the control points using TPS transformation after the con-
trol point association is established.

II.E. Evaluation of the models using digital phantom
and existing patient data

The performance of the above model is evaluated by a
number of 2D digital phantoms and archived clinical cases.
In the digital phantom experiments, two deformations are
introduced. A virtue of this approach is that the “ground
truth” solutions exist and the transformation matrices are
known, thus making the evaluation straightforward. The
mathematical transformations used to deform the phantom
are generated using a formula12

x��x,y� = �1 + b cos m��x , �3�

y��x,y� = �1 + b cos m��y . �4�

Here, �=tan−1 y /x. Two parameters, m and b, are used to
characterize a deformation. Generally, they describe the
complexity and magnitude of a deformation, respectively.
The contour outlined in the original image is then mapped to
the deformed image. The accuracy of the contour mapping
calculation is assessed by comparing directly with the de-
formable mapping from the known transformation matrix.

Contour propagation from pCT to CBCT is studied by
using three prostate cancer patients and two rectal cancer
cases. The pCT is acquired with a GE Discovery-ST CT
scanner �GE Medical System, Milwaukee, WI� approxi-

mately two weeks prior to the initiation of the radiotherapy.
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The on-treatment CBCT images are acquired using the
Varian Trilogy™ �Varian Medical Systems, Palo Alto, CA�.
Each slice of pCT or CBCT is discretized into 512�512
voxels. The images are transferred through DICOM to a
high-performance personal computer with a Xeon �3.6 GHz�
processor for image processing. The manually outlined con-
tours in the pCT images are mapped to CBCT images using
the proposed technique. For the cases studied here, the ac-
cordance between the rectal volumes after deformable regis-
tration and the manually segmented rectum is employed to
assess the success of the proposed algorithm.

To quantitatively evaluate the result of contour propaga-
tion, the accordance value between the automapped contour
and manually outlined contours were calculated. In general,
suppose A and B are two contours, the accordance value r is
defined as

r =
VA � VB

VA � VB
, �5�

here, V is the containing volume of A or B.

III. RESULTS

III.A. 2D digital phantom experiment

The proposed algorithm is first tested using a 2D digital
phantom �Fig. 4�a�� with two intentionally introduced defor-
mations of the image shown in Figs. 4�b� and 4�c�, respec-
tively. The rectal contour is manually outlined and shown in
Fig. 4�a�. The deformation shown in Figs. 4�b� and 4�c� are
obtained by setting the parameters b and m in Eqs. �3� and
�4� to �b=2, m=2� and �b=2, m=3�, respectively. The curves
close to the interior surface of the rectum in Figs. 4�b� and
4�c� represent the automapped contour. For comparison, the
original contour in Fig. 4�a� is also mapped rigidly to Figs.
4�b� and 4�c�. Overall, the mapped contours can capture the
main features of the two dramatic deformations, and conform
to the boundary of the rectum in both cases.

In obtaining the result shown in Fig. 4�b�, a total of 200
control points were identified by the bidirectional SIFT cal-
culation as described in method. Note that the bony structure
in the image has been excluded in this calculation by setting
an intensity threshold of 300 CT number. In this way, any
unphysical bony structure deformation is avoided. For clar-
ity, a selection of the SIFT-identified control point associa-
tions are displayed in Fig. 5. The superior contour represents
the superior surface of narrow band. The total number of
control points identified here are far more than that com-
monly used in TPS calculation,13 allowing an improved de-
formable warping of the narrow band. We should notice that
the control points 2, 3, 4, 5, and 9 in Fig. 5 are relatively far
away from the rectum wall compared to control points 6 and
10. Since the TPS interpolation is used after SIFT mapping,
every control point including points 2, 3, 4, 5, and 9 will
affect the deformable warping and therefore the contour
shape, although the weights of points 2, 3, 4, 5, and 9 are
smaller than points 6 and 10. The displacement field derived

by using TPS method is shown in Fig. 6�a�. For comparison,
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the known displacement field from Eqs. �3� and �4� is plotted
in Fig. 6�b�. The subtraction between the TPS-derived dis-
placement field and the known field is shown in Fig. 6�c�. It
is found that the average deviation of the SIFT-TPS displace-
ment from the known solution is less than 1.2 mm.

III.B. Clinical case study

The contour propagation study from pCT to CBCT for the
first prostate case is presented in Fig. 7. The top row shows
the pCT image with manually outlined contours. The au-
tomapped contours overlaid on the CBCT are displayed in
the bottom row. For comparison, the manually outlined con-
tours on the CBCT are also plotted in the bottom row. As
mentioned in Sec. I, the propagation of rectum wall is often
complicated by the fact that the physical one-to-one corre-
spondence may not exist due to the addition or subtraction of
some contents within the rectum. Figure 8 exemplifies this
and shows that the rectal filling at the time of CBCT acqui-
sition is quite different from that of pCT. As can be intu-

FIG. 4. Rectal contour propagation from the 2D pCT slice to two dramati-
cally deformed images. �a� Original contour, �b� and; �c� its optimal map-
ping in the two deformed images.
itively conceived, this image content change could severely
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reduce the performance of a conventional deformable
registration.14 The narrow band approach described in this
work circumvents the problem by excluding the rectal vol-
ume affected by the rectum/bladder filling. Accuracy was
evaluated by comparison with manually outlined contours on
the CBCTs.15–17 It is clear that the mapped contours closely
conform to the rectal wall change. The accordance between
the rectal volume extended by the automapped contour and
the manually segmented rectal volume was found to be more
than 90%.

In practice, rectal volume motion and deformation can
cause large uncertainties pertaining to the adequacy of actual
dose delivered to the gross tumor volume as well as to the
surrounding normal structures. This issue has been a major
obstacle in the implementation of IMRT in rectal cancer. In
Fig. 8 six axial pCT and CBCT images of a rectal cancer
patient acquired in an interval of two weeks are shown.
Large target volume motion and deformation are observed
from Fig. 8. The rectal volume in the pCT is found to be
three times more than that of the rectal volume in the CBCT
and thus represents a challenging situation for any deform-
able model. The rectal contours are manually outlined in the
pCT and mapped to the subsequent CBCT using the pro-
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FIG. 5. Control points in the 2D contour mapping.
posed method. The first and second rows of Fig. 8 show six
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axial slices of the pCT with manually outlined contours. The
results of contour propagation from the pCT to the CBCT are
shown in the third and fourth rows of Fig. 8. As the same as
in Fig. 7 the manually outlined contours on the CBCT are
also plotted. The accordance between the rectal volume ex-
tended by the automapped contours and the manually seg-
mented rectal volume was found to be more than 95%. The
rectal deformations in Fig. 8 are quite large and thus present
challenges to any deformable model or contour mapping

FIG. 6. Displacement fields. �a� TPS-derived displacement field for the 2D
digital phantom study; �b� intentionally introduced displacement field; and
�c� subtraction of TPS derived and the known displacement fields.
technique. It is impressive that a simple approach with a
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narrow band and SIFT descriptor can capture the main fea-
ture of the rectal contour and help to find the correspondence
contours in the CBCT images.

To further examine the performance of the proposed tech-
nique, the method was also applied to three additional pa-
tients �Fig. 9�. The automapped contours are plotted together
with the manually outlined contour on the CBCT. For com-
parison, the original contours on pCT are also mapped rig-
idly to the CBCT. The accordance values between the pCT
and CBCT contours, as well as between the automapped and
manually segmented CBCT contours for these three patients
are listed in Table I. In these cases, the accordance values are
increased from around 75% to over 90% after contour map-
ping. The influence of the � ratio on the contour propagation
is illustrated by the data listed in Table II, where the accor-
dance values for a few different � ratios for the three patients
are shown. The accordance reached its peak value when the
� ratio is between 0.8 and 0.9 for all these three cases. When
the � ratio is lower than 0.8, the accordance decreases with
the decrease of the � ratio because less control points are
selected. The accordance also decreases with the increase of
the � ratio for the � ratio higher than 0.9. The accordance
value is stable for � ratios between 0.8 and 0.9. The data also
indicate that the � ratio is generally organ specific and is
insensitive for different patients.

IV. DISCUSSION

In this work, an effective feature-based rectal contour
mapping algorithm has been described. An indispensable
step toward online or offline adaptive replanning with con-
sideration of the patient’s dose delivery history and on-
treatment anatomy is the expedite organ segmentation of
CBCT images. While this task is, in principle, achievable
using deformable registration of the pCT and CBCT images,
the accuracy of the registration and therefore the contour
mapping, is often adversely affected by the presence of im-
age contents in one image that do not have correspondence
in the other image. The propagation of rectum wall is an
example of this. For prostate, rectal, or gynecological cancer
patients for example, the presence and absence of bowel gas
can vary daily. Coregistering an empty rectum without bowel
gas to a rectum filled with bowel gas �or vice versa� using
any deformable model could be problematic and large errors
could occur.

We describe a regional contour propagation algorithm tak-
ing into account possible organ deformation and anatomic
changes. Because the narrow band contains only the image
features outside the rectum, this method is not affected by
the rectum filling changes. The use of SIFT descriptor en-
hances our ability to find the correspondence of the narrow
band because of the effective utilization of image intensity
and gradient information. In contrast to the conventional
intensity-based image registration, which only uses intensity
information of the voxels, the feature-based registration ex-
tracts information regarding image structure, including

shape, texture, etc. Therefore, the feature-based image regis-
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tration is generally more effective in correctly identifying
corresponding voxels compared to the intensity-based image
registration.

In this study, a bidirectional SIFT descriptor is employed
to examine the reliability and robustness of the calculations.
The bidirectional mapping further enhances the degree of
success of a contour propagation algorithm. It is useful to
note that the bidirectional mapping is a necessary �but not
Medical Physics, Vol. 35, No. 10, October 2008
sufficient� test. In a rare but possible situation, the bidirec-
tional mapping may not be able to find an error occurred in
the contour mapping process.

Because the iterative procedure in the B-spline is not
needed in our method, the calculation speed is at least ten
times faster than B-spline registration. Typically the total cal-
culation time of SIFT-TPS mapping with about 1000 SIFT
descriptors is less than 2 min. Several parameters influence

FIG. 7. 3D contour mapping for the
rectum of a man with prostate cancer.
The top row is the three transactions in
the planning CT image, the bottom
row is corresponding transactions in
the CBCT image. The left column is
the axial plane, the middle column is
the coronal plane, and the right col-
umn is the sagittal plane.

FIG. 8. Rectal contour mapping for a
rectal cancer case. The first and second
rows show six axial slices in the pCT
image. The third and fourth rows are
the corresponding slices in the CBCT
image.
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calculation time. For example, larger narrow-band will result
in longer calculation times. The number of control points
also affects calculation time quite nonlinearly as well. For
most cases, 300 control points are enough for accurate con-
tour mapping. Due to the tight clinical timeframes �espe-
cially for real-time adaptive schemes�, 1 or 2 min calculation
time allows the use of the contour mapping tool between
acquiring the verification images and delivering the dose
fraction for online corrections.18

In some cases, no corresponding feature is found by SIFT
in a certain area close to the rectal wall. For instance, no
control point was found in the upper part of Fig. 5. Since no
large local deformation was in these regions, the result was
all right. However, it would have lead to larger errors in case

(a) (b)

(d) (e)

(g) (h)

TABLE I. Accordance values between the pCT and C
manually segmented CBCT contours for three patien

Accordance values between pCT and
CBCT contours �%�
Accordance values between auto-mapped
and manually segmented CBCT contours �%�
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of large deformations plus low feature density, which may
happen in smooth soft tissues. We will improve it in our
future work.

One of the practical concerns is that the relatively low
quality of CBCT images may influence the accuracy of im-
age registration and thus the contour mapping. Paquin et al.
quantitatively studied the influence of different types of
noises on deformable registration and found that the accu-
racy of image registration does not depend on the global
noise unless the noise reaches a certain threshold value.19

Murphy et al. also demonstrated that noise levels in cone-
beam CTs that might reduce manual contouring accuracy do
not reduce image registration and automatic contouring
accuracy.20

(c)

(f)

(i)

FIG. 9. Automatic contour propaga-
tion for three additional patients.

contours, as well as between the auto-mapped and

Patient 1 Patient 2 Patient 3

73.7 76.5 76.3

93.3 91.3 91.4
BCT
ts.
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Deformable model plays an important role in automated
contour propagation. Numerous approaches have been devel-
oped for different applications. Most popular deformable
registration methods for medical images include the thin
plate splines �TPS�,8 B-splines,21,22 and finite element
method �FEM�.23 TPS is less sensitive to noise because of its
global calculation nature.24 It relies on the use of homolo-
gous control points in the two input image sets to be coreg-
istered. Control points are manually selected for many TPS
applications.13,25,26 This may introduce interuser variability
and is a major source of error. Malsch et al. presented an
automatic block matching method,18 which is similar to the
control volume based approach proposed by Schreibmann
and Xing.27 Kim et al. presented an automated TPS, where
an arbitrary set of control points is supplied initially and then
is iteratively repositioned until the resulting warp optimizes
some measure of registration.28–30 The convergence of the
iterative calculation is slow because each control point influ-
ences the transformation in a global fashion. An alternative is
to use B-splines. In contrast to TPS, which allows arbitrary
configurations of the control points, B-spline requires a regu-
lar mesh of control points with uniform spacing. Unlike
spline-based registration methods, FEM models the deform-
ing image as an elastic body subject to external forces which
drive the deformation and internal forces �stresses� which
impose smoothness constraints.31,32 FEM may fail to model
highly localized deformations, since the deformation energy
caused by stress increases proportionally with the strength of
the deformation.33

V. CONCLUSION

Large interfractional patient setup uncertainty and
anatomy changes have been reported in numerous studies
and are widely recognized as one of the major limiting fac-
tors for maximum exploitation of modern radiation therapy
techniques such as IMRT and IGRT. The advent of onboard
volumetric imaging devices promises to improve the situa-
tion by providing valuable 3D �or even possibly four-
dimensional� geometric data of the patient in the treatment
position and allows for the adaptive modification of treat-
ment plan during a course of treatment.

In this work, an effective feature-based rectal contour
mapping algorithm has been described. The method yielded
satisfactory mapping for both digital phantom and clinical
cases. It is impressive that the algorithm is able to success-
fully map the contours from pCT to CBCT even for some

TABLE II. Accordance values between the auto-mapp
�-ratios for three patients.

� ratio 0.7 0.75

Patient 1 �%� 81.5 88.4
Patient 2 �%� 76.3 82.1
Patient 3 �%� 67.5 86.6
very challenging cases in which the deformation and/or im-

Medical Physics, Vol. 35, No. 10, October 2008
age content change are dramatic. The two salient features of
the described algorithm are: �1� the use of inherent tissue
feature for control point selection as a priori knowledge for
deformable registration; and �2� limiting the ROI to exclude
the volume inside the rectum and focusing on the adjacent
neighborhood of the rectal contour. The algorithm should be
extendable for contour propagation of organs with similar
features, such as the bladder and stomach.
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Abstract
Kilovotage cone-beam computed tomography (kV-CBCT) has shown potentials
to improve the accuracy of a patient setup in radiotherapy. However, daily and
repeated use of CBCT will deliver high extra radiation doses to patients. One
way to reduce the patient dose is to lower mAs when acquiring projection data.
This, however, degrades the quality of low mAs CBCT images dramatically
due to excessive noises. In this work, we aim to improve the CBCT image
quality from low mAs scans. Based on the measured noise properties of the
sinogram, a penalized weighted least-squares (PWLS) objective function was
constructed, and the ideal sinogram was then estimated by minimizing the
PWLS objection function. To preserve edge information in the projection
data, an anisotropic penalty term was designed using the intensity difference
between neighboring pixels. The effectiveness of the presented algorithm was
demonstrated by two experimental phantom studies. Noise in the reconstructed
CBCT image acquired with a low mAs protocol was greatly suppressed after
the proposed sinogram domain image processing, without noticeable sacrifice
of the spatial resolution.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Integration of the kilovotage cone-beam computed tomography (kV-CBCT) with a linear
accelerator makes it possible to acquire a high-resolution volumetric image of a patient at
a treatment position. There is growing interest in using on-board kV-CBCT for a patient
treatment position setup and dose reconstruction in radiotherapy (Xing et al 2006, Yang et al
2007, Lee et al 2008). However, the repeated use of kV-CBCT during the course of a treatment
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has raised concerns of an extra radiation dose delivered to patients (Brenner and Hall 2007,
Islam et al 2006, Wen et al 2007). It has been reported (Wen et al 2007) that the dose delivered
from Varian’s kV-CBCT system with current clinical protocols is more than 3 cGy for central
tissue and about 5 cGy for most of the peripheral tissues during an IMRT (intensity-modulated
radiation therapy) treatment course for prostate cancer. The extra radiation exposure to normal
tissue during kV-CBCT will significantly increase the probability of stochastic risk of inducing
cancer and genetic defects. Based on the ALARA (as low as reasonably achievable) principle,
the unwanted kV-CBCT dose should be minimized to fully realize its advantages of precise
target localization during radiotherapy (Murphy et al 2007).

One way to reduce the radiation dose delivered to patients during the kV-CBCT procedure
is to acquire CT projection data with a lower mAs level (can be realized by reducing the
tube current or pulse time). However, the image quality of the projection image and the
reconstructed CBCT image will be degraded due to excessive quantum noise as a result of
a low mAs protocol. Conventionally, noise in CT is suppressed by using a low-pass filter
to attenuate the high-frequency component of the projection data during reconstruction. The
high-frequency component contains information of both noise and edges, where a simple
low-pass filter cannot differentiate edge information from noise. Therefore, noise reduction
using a low-pass filter will result in loss of edges, which is not desirable for CT imaging.
Several edge-preserving filters (Hsieh 1998, Kachelriess et al 2001, Zhong et al 2004) have
been proposed to reduce noise in CT images based on local characteristics of the projection
data elements. More recently, statistics-based image domain (Li et al 2005a) and sinogram
domain restoration algorithms (Li et al 2004, La Riviere 2005, La Riviere and Billmire 2005,
Wang et al 2006) have shown advantages in noise reduction and edge preservation for low-
dose fan-beam CT. In the meantime, noise properties of CT projection data have been under
investigation (Li et al 2004, Whiting et al 2006) and the noise model of the sinogram data in
Radon space (i.e. line integrals) has been validated by experimental studies (Wang et al 2008).
In this work, we aim to improve the low-dose CBCT image quality by reducing noise in the
CBCT sinogram before image reconstruction. The noise reduction algorithm incorporates
the noise modeling of the CT sinogram data in Radon space (line integrals) to construct
a penalized weighted least-squares (PWLS) objective function (Fessler 1994, Sukovic and
Clinthorne 2000). The ideal solution of the line integrals is then estimated by minimizing
the PWLS objective function. The weighted least square is based on the first and second
moments of the noise in the sinogram data and an anisotropic penalty is designed to preserve
the edges in the sinogram. CBCT images are reconstructed by using the Feldkamp–Davis–
Kress (FDK) (Feldkamp et al 1984) algorithm after all sinogram images are processed by the
PWLS criterion sequentially. The effectiveness of the PWLS-based noise reduction algorithm
is demonstrated by two experimental phantom studies.

2. Methods and materials

2.1. CBCT sinogram smoothing

Ideally, the line integral of attenuation coefficients can be calculated by

pi = ln
Ni0

Ni

, (1)

where Ni0 and Ni are the incident photon number and detected photon number at the detector
bin i respectively. For ease of presentation, we refer the measurement as a photon number. In a
real x-ray CBCT system, the measured signal is total energy deposit on the flat-panel detector.
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In the following of this paper, we refer the value of pi as the sinogram datum at the detector
bin i. Mathematically, the PWLS cost function in the sinogram domain can be written as

�(p) = (ŷ − p̂)T �−1(ŷ − p̂) + βR(p). (2)

The first term in equation (2) is a weighted least-squares criterion, where ŷ is the vector of
the measured sinogram data and p̂ is the vector of the ideal sinogram data to be estimated.
The symbol T denotes the transpose operator. The matrix � is a diagonal matrix and its ith
element is the variance of sinogram data at the detector bin i. The second term in equation
(2) is a smoothness penalty or a priori constraint, where β is the smoothing parameter which
controls the degree of agreement between the estimated and the measured data.

The element of the diagonal matrix � is the variance of the corresponding sinogram
datum, and it determines the contribution of each sinogram datum to the cost function. Based
on the sinogram noise modeling in Li et al (2004) and Wang et al (2008), the variance of the
sinogram datum can be estimated by

σ 2
i = exp(pi)/Ni0. (3)

For a fixed incident photon number Ni0, a sinogram datum with a larger value will have a
larger variance and therefore less contribution to the cost function since the weight of that
measured datum is 1

/
σ 2

i as defined in equation (2). This can be understood by the following
observation. A larger sinogram datum value pi at the detector bin i indicates less x-ray
photons being detected, i.e. smaller Ni in equation (1), or more photons being attenuated
along the projection path i. A detector bin receiving less photons will be associated with a
smaller signal-to-noise ratio (SNR) based on the Poisson noise nature of the detected x-ray
photons. Therefore, the weighted least-squares criterion reflects the above observation that
the measured datum with a lower SNR will contribute less for estimation of its ideal sinogram
datum.

To calculate the sinogram datum variance at the detector bin i via equation (3), we need
to estimate the incident photon number Ni0 for calculation of the sinogram variance. The
incident photon number is mainly determined by the protocols of tube current and the duration
of x-ray pulse (i.e. mAs). Ideally, the incident x-ray flux from the tube would be calibrated
as uniform as possible across a field of view (FOV), i.e. Ni0 is a constant for all the detector
bins. In reality, the x-ray flux is modulated to consider the concavity shape of the human
body by the bow-tie attenuating filter prior to arrival at the patients. Therefore, the incident
photon number will not be a constant across the FOV. To estimate the incident intensity over
the FOV at a specific mAs level, we performed the air scan and then averaged the projection
image over all projection view angles. Figure 1 shows the incident x-ray intensity with the
tube current 80 mA and duration of pulse 10 ms. The incident x-ray intensity can then be used
for estimation of the sinogram data variance

{
σ 2

i

}
.

The penalty term in equation (2) is a prior or smoothing constraint, which encourages the
equivalence between neighboring data elements. In Li et al (2004) and Wang et al (2006), a
penalty of a quadratic form with equal weights for all neighbors has been used for sinogram
smoothing of fan-beam CT:

R(p) =
∑

n

win(pi − pn)
2, (4)

where n represents four nearest neighbors around pixel i and win is the weight for neighbor
n. With an equal weight for the four nearest neighbors, these neighbors play an equivalent
role in constraining the solution. As such, it provides a uniform regularization without
considering details of intensity variation and possibly the presence of edges in the sinogram
image. To preserve the edge information in the sinogram image of CBCT, we propose to use
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Figure 1. Incident x-ray intensities across the field of view with 80 mA tube current and 10 ms
pulse time. Relative intensity is mainly caused by the bow-tie filter.

anisotropic weights for different neighbors in the sinogram image. The weight of the neighbor
is determined by the magnitude of difference between neighbors and the concerned pixel. For
a larger difference between the neighbor and the pixel, the coupling between them should be
weaker and the weight win should be smaller. This form of weight is chosen the same as the
conducting coefficient in the well-known anisotropic diffusion filter (Perona and Malik 1990):

win = exp

[
−

(
pi − pn

δ

)2
]

, (5)

where the gradient determines the strength of the diffusion during each iteration and the
parameter δ was chosen as 90% of histogram of the gradient magnitude of the sinogram to be
processed (Perona and Malik 1990).

Minimization of the objective function 2 can be performed efficiently by the iterative
Gauss–Seidel updating strategy. The updating formula for the solution of p̂ is given by

p
(k+1)
i =

yi + βσ 2
i

(∑
n∈N1

i
winp

(k+1)
n +

∑
n∈N2

i
winp

(k)
n

)
1 + βσ 2

i

∑
n∈Ni

win

, (6)

where the index k represents the iterative number, N1
i denotes those two nearest neighbors of

i whose index is smaller than i, N2
i denotes those two nearest neighbors of i whose index is

larger than i and Nidenotes these four nearest neighbors of pixel i in the sinogram image. The
initial of p̂ is given by the measured data ŷ.

2.2. On-board kV-CBCT

The cone-beam CT projection data were acquired by ExactArms (kV source/detector arms)
of a Trilogy(tm) treatment system (Varian Medical Systems, Palo Alto, CA). The number of
projections for a full 360◦ rotation is around 634. The dimension of each acquired projection
image is 397 mm × 298 mm, containing 1024 × 768 pixels. The system has a FOV of 25 cm×
25 cm (full-fan mode) in the transverse plane and 17 cm in the longitudinal direction, which
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Figure 2. Illustration of the anthropomorphic head phantom used for evaluation of the PWLS
algorithm.

can be increased to 45 cm × 45 cm in the transverse plane by shifting the detector laterally
(half-fan mode).

Two phantoms were used to evaluate the performance of the proposed PWLS algorithm
in this study. The first phantom is a commercial calibration phantom CatPhan R© 600 (The
Phantom Laboratory, Inc., Salem, NY). Details about the CatPhan R© 600 phantom can be
found in Li et al (2005a). The second one is an anthropomorphic head phantom (see figure 2).
For each phantom, the x-ray tube current was set at 10 mA (low dose) and 80 mA (high dose)
during acquisition of CBCT projection images. At both mA levels, the duration of the x-ray
pulse at each projection view was 10 ms. The tube voltage was set to 125 kVp during all data
acquisitions. After each sinogram acquired with the low-mAs protocol was processed by the
PWLS algorithm described above, the CBCT image was reconstructed by the FDK algorithm.
The voxel size in the reconstructed image is 0.5 × 05 × 0.5 mm3.

3. Results

3.1. CatPhan R© 600 phantom

We first tested the proposed algorithm on the CatPhan R© 600 phantom. Several representative
slices of the reconstructed CBCT are shown in figures 3, 4 and 6. In each of these figures, (a) is
the FDK reconstructed image from the projection data acquired with 10 mA tube current, (b) is
the FDK reconstructed image from the sinogram processed by the proposed PWLS sinogram
smoothing algorithm and (c) is the FDK reconstructed image from the sinogram obtained with
80 mA tube current.

Figure 3 shows that one slice of image contains a point-like object, which mimics a
fiducial marker. In figure 3(a), the point source is difficult to be observed. After the sinogram
was processed by the PWLS algorithm, the reconstructed image (figure 3(b)) is very similar
to that obtained with a high mA protocol (figure 3(c)). The point source was well recovered
and easy to be detected.
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(a) (b) 

(c)

Figure 3. One slice of the FDK reconstructed image of the CatPhan R© 600 phantom containing
a point-like object: (a) from projection images acquired with 10 mA tube current, (b) after the
sinogram acquired with 10 mA tube current is processed by the PWLS algorithm and (c) from
projection images acquired with 80 mA tube current.

Figure 4 shows that one slice of image contains several strips with different sizes and
contrasts, which can be used to study the edge information in the reconstructed images. The
CT image reconstructed from the PWLS-processed sinogram is comparable to that obtained
with the 80 mA protocol in terms of detectability of the strips; see ROI2 in figure 4(c). To
show the difference between figures 4(a), (b) and (c), in figure 5 we plotted horizontal profiles
along the central strips (see ROI1 in figure 4(c)). It can be observed that the edges are well
preserved (compare profiles through figures 3(b) and (c)), while noise is effectively suppressed
(compare profiles through figures 3(a) and (b)).

To further quantitatively evaluate the effectiveness of the PWLS sinogram smoothing
algorithm, we calculated the contrast-to-noise ratio (CNR) at different regions of interest
(ROIs) in the images shown in figure 6. The CNR is defined as

CNR = |µs − µb|√
σ 2

s + σ 2
b

, (7)
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(a)      (b) 

(c)

ROI2

ROI1

Figure 4. One slice of the FDK reconstructed image of the CatPhan R© 600 phantom containing
several strips: (a) from projection images acquired with 10 mA tube current, (b) after the sinogram
acquired with 10 mA tube current is processed by the PWLS algorithm and (c) from projection
images acquired with 80 mA tube current.

Table 1. CNRs of four ROIs in figure 5.

ROI1 ROI2 ROI3 ROI4 ROI5

80 mA 1.83 7.31 4.75 1.51 0.89
10 mA 0.82 2.70 1.68 0.49 0.36
PWLS 10 mA β = 0.05 1.92 6.88 4.75 1.33 0.85

where µs is the mean value of the signal and µb is the mean value of the background. Five
circular objects (indicated by arrows in figure 6) with different intensities were chosen to
calculate CNRs. Table 1 lists the CNRs of these five ROIs. After a 10 mA sinogram was
processed by the PWLS algorithm, the CNR in the reconstructed image improved significantly.
It can be observed that the CNR of a PWLS-processed 10 mA image is comparable to that of
the image acquired with the 80 mA protocol.
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Figure 5. Profiles through the central strips in figure 4 (indicated by ROI1).

3.2. Anthropomorphic head phantom

Results of the anthropomorphic head phantom are shown in figure 7. Figure 7(a) shows one
slice of the reconstructed images from projection data acquired with the 10 mA protocol.
Figure 7(c) shows the reconstructed image from the PWLS-processed 10 mA sinogram.
Figure 7(d) shows the same slice of the image reconstructed from the sinogram obtained with
80 mA. It can be observed that noise in 10 mA CT images is efficiently suppressed after the
sinogram is processed by the PWLS algorithm. The processed low-dose CT (10 mA) image
is very similar to its corresponding high-dose image (80 mA) by visual judgment. Standard
deviation of the noise in a uniform ROI (as indicated by an arrow in figure 7(d)) is 2.8×10−3in
a low-dose (10 mA) image and 0.951 × 10−3 in its corresponding high-dose image. After
the low-dose sinogram is processed by the PWLS algorithm with a smoothing parameter
β = 0.05, the standard deviation of the same ROI is 0.955 × 10−3, which is fairly close to the
noise level of the 80 mA image.

To further illustrate how the edge information is affected by the PWLS sinogram
smoothing, in figure 7(e) we show the difference image between figures 7(a) and (c). In
the difference image, random noise is dominant and no edge or structure can be observed.
This indicates that the edge information is well preserved in the PWLS-processed images.

4. Discussion

Generally, noise reduction for CT imaging can be performed in three spaces: projection data
(either before or after logarithmic transform), filtered projection data (before backprojection
operation during reconstruction) and reconstructed CT images. During filtering and
backprojection operation, the noise properties will change significantly. Then noise modeling,
such as distribution of noise and variance of noise, is difficult in filtered projection data and
reconstructed image. Therefore, in this work we chose to work on the log-transformed data
to fully utilize the noise model of the projection data in the Radon space (Li et al 2004, Wang
et al 2008).
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(a) (b) 

(c)

ROI1
ROI2

ROI3

ROI4

ROI5 

Figure 6. One slice of the FDK reconstructed image of the CatPhan R© 600 phantom containing
several circular objects with different intensities: (a) from projection images acquired with 10 mA
tube current, (b) after the sinogram acquired with 10 mA tube current is processed by the PWLS
algorithm and (c) from projection images acquired with 80 mA tube current.

Accurate noise modeling of measurement is fundamentally important in statistics-based
image processing algorithms. Meanwhile, the regularization term also plays an important
role in the performance of the algorithm. In CT sinogram processing, a commonly used
regularization takes a quadratic form with equal weights for neighbors of an equal distance
(La Riviere 2005, La Riviere and Billmire 2005, Li et al 2004, Wang et al 2006). Such a
quadratic penalty simply encourages the equivalence between neighbors without considering
discontinuities in the image and may lead to over-smoothing around sharp edges or boundaries.
In the presented algorithm, we proposed an anisotropic penalty to consider the difference
among neighbors. The idea was inspired by the well-known anisotropic diffusion filter (Perona
and Malik 1990), in which the gradient controls the strength of diffusion among neighbors. The
coupling between neighbors should be smaller if the absolute value of difference between them
is smaller and this kind of neighbors should contribute less to the solution of the concerned
pixel (see equation (6)). There are many choices that satisfy this behavior of weighting. In this
work, the form of the anisotropic weight was chosen the same as the conduction coefficients
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(a) (b) (c) 

(d) (e) 

ROI

Figure 7. One slice of FDK reconstructed image of the anthropomorphic head phantom: (a)
from projection images acquired with 10 mA tube current, (b) using a low-pass Hanning filter
with cutoff 80% Nyquist frequency, (c) after the sinogram acquired with 10 mA tube current is
processed by the PWLS algorithm, (d) from projection images acquired with 80 mA tube current
and (e) difference image between (d) and (c).

in the anisotropic diffusion filter (Perona and Malik 1990). By such a choice, the anisotropic
quadratic form penalty discourages the equivalence between neighbors if the gradient between
them is large, and the edges or boundaries in the image will be better preserved. This effect is
similar to that of anisotropic coefficients in the diffusion filter.

In the presented method, the reconstruction of CT images was performed by an analytical
FDK algorithm for its speed and accuracy. During the FDK reconstruction process, noise
can also be suppressed by using a low-pass filter. It has been reported (Li et al 2004, La
Riviere 2005) that a statistics-based sinogram smoothing algorithm plus FBP reconstruction
is superior to conventional low-pass filters for noise suppression of 2D fan-beam CT. In this
work, we also reconstructed the CT image of the anthropomorphic head phantom using a
Hanning filter with a cutoff at 80% Nyquist frequency, see figure 7(b). It can be observed that
the image reconstructed from the PWLS-processed sinogram is superior to the result of the
Hanning filter in terms of noise suppression and structure preservation.

Similar to the cutoff frequency in the conventional low-pass filter during reconstruction,
there is also a free parameter β in the presented method which controls the trade-off of the
noise level and the structure preservation in reconstructed images. In this work, the choice
of β is determined by the visual judgment. The optimal choice of the parameter β can be
determined by more sophisticated ways such as the received operating characteristic (ROC)
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study. Nevertheless, the parameter β can be chosen according to the noise level of the sinogram
because from equation (6),the solution for the ideal sinogram, we can see that the parameter
β and variance σ 2

i are always coupled together. The noise level of the projection data is
mainly determined by two factors: incident photon number and line integrals. As such, the
parameter β could be optimized at a certain mAs level and treatment site for patients of a
similar size. In this work, however, the parameter is chosen empirically, which is justifiable
when the dependence of the parameter on the noise level is weak.

The method presented in this paper is based on the noise properties of the sinogram,
and the smoothing constraint or penalty is applied to the sinogram domain. Based on the
same noise model, the smoothing constraint can also be applied to the CT image domain, and
the statistical iterative reconstruction (SIR) algorithm can be used to obtain the attenuation
coefficient map by minimizing the objective function. The SIR-based algorithms showed
some advantages over the conventional filtered backprojection method for multi-slice helical
CT (Thibault et al 2007). However, an obstacle for practical use of SIR is the computation
burden, especially for large volume datasets of CBCT. It takes more than 10 h to reconstruct
the typical volume of multi-slice helical CT using SIR (Thibault et al 2007). It takes only
3 s for the presented sinogram smoothing method to process one projection image using
a PC with 3.0 GHz CPU. Parallel computing can speed up both SIR and sinogram-based
algorithms significantly using the cell broadband engine (Knaup et al 2006) and PC cluster
(Li et al 2005b). It is possible to achieve clinically acceptable time for the presented sinogram
smoothing algorithm through parallel computation. It is an interesting research topic to
quantitatively compare the performance of the SIR-based CBCT reconstruction algorithm and
the statistics-based sinogram smoothing method.

When CBCT is used for patient setup and target localization during radiotherapy, some
extra information may be taken into account for dose and noise reduction. For example, a
complete CT volume dataset with high clarity used for treatment planning is usually available
before the treatment. This will provide strong a priori information of the patient before each
CBCT scan. Prior information of planning 3D CT has been proved useful to improve the
image quality of 4D CBCT (Li et al 2007). It is expected that the radiation dose of CBCT
used for radiotherapy can be further reduced by incorporating the planning CT information
into the image restoration or reconstruction algorithms.

In the report of the AAPM task group 75 (Murphy et al 2007), several dose reduction
strategies for image-guided radiotherapy were discussed. For CBCT, dose reduction can be
achieved by narrowing field of view to avoid delivering radiation to an unnecessary region of
the patient (Murphy et al 2007). Compared with these hardware-based approaches, software
approaches (such as the one proposed in this paper) provide a more cost-effective means
for dose reduction of CBCT. In addition to the statistics-based reconstruction and restoration
algorithms, advanced analytical CBCT reconstruction algorithms (Leng et al 2007, Zhuang
et al 2006, Zou and Pan 2004, Zou et al 2005) may further improve the low-dose CBCT image
quality.

5. Conclusion

A PWLS algorithm with non-uniform weights was proposed to reduce noise in low-dose
onboard CBCT. In this method, the sinogram was first processed according to the PWLS
criterion. The weight for each measurement was chosen as sinogram datum variance, where
variance can be estimated accurately according to the sinogram noise model. To preserve
edge information during noise reduction, we proposed an anisotropic quadratic form penalty.
The quadratic form penalty encourages equivalence between neighbors and the anisotropic
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penalty provides the mechanism to control the influence of different neighbors according to
its corresponding gradient. The effectiveness of the proposed method is demonstrated by
two experimental phantom studies. The quality of the 10 mA CT image after its sinogram
processed by the PWLS algorithm is comparable to the image obtained with the 80 mA
protocol. These experimental results indicate that it is possible to reduce the CBCT radiation
dose by a factor of 1/8 without loss of useful information for radiotherapy.
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The advantage of highly conformal dose techniques such as 3DCRT and IMRT is limited by
intrafraction organ motion. A new approach to gain near real-time 3D positions of internally im-
planted fiducial markers is to analyze simultaneous onboard kV beam and treatment MV beam
images �from fluoroscopic or electronic portal image devices�. Before we can use this real-time
image guidance for clinical 3DCRT and IMRT treatments, four outstanding issues need to be
addressed. �1� How will fiducial motion blur the image and hinder tracking fiducials? kV and MV
images are acquired while the tumor is moving at various speeds. We find that a fiducial can be
successfully detected at a maximum linear speed of 1.6 cm /s. �2� How does MV beam scattering
affect kV imaging? We investigate this by varying MV field size and kV source to imager distance,
and find that common treatment MV beams do not hinder fiducial detection in simultaneous kV
images. �3� How can one detect fiducials on images from 3DCRT and IMRT treatment beams when
the MV fields are modified by a multileaf collimator �MLC�? The presented analysis is capable of
segmenting a MV field from the blocking MLC and detecting visible fiducials. This enables the
calculation of nearly real-time 3D positions of markers during a real treatment. �4� Is the analysis
fast enough to track fiducials in nearly real time? Multiple methods are adopted to predict marker
positions and reduce search regions. The average detection time per frame for three markers in a
1024�768 image was reduced to 0.1 s or less. Solving these four issues paves the way to tracking
moving fiducial markers throughout a 3DCRT or IMRT treatment. Altogether, these four studies
demonstrate that our algorithm can track fiducials in real time, on degraded kV images �MV
scatter�, in rapidly moving tumors �fiducial blurring�, and even provide useful information in the
case when some fiducials are blocked from view by the MLC. This technique can provide a gating
signal or be used for intra-fractional tumor tracking on a Linac equipped with a kV imaging system.
Any motion exceeding a preset threshold can warn the therapist to suspend a treatment session and
reposition the patient. © 2008 American Association of Physicists in Medicine.
�DOI: 10.1118/1.2953563�
I. INTRODUCTION

Highly conformal radiation therapy techniques, such as
three-dimensional conformal radiotherapy �3DCRT� and
intensity-modulated radiation therapy1 �IMRT�, provide ex-
quisitely shaped radiation doses that closely conform to tu-
mor dimensions while sparing sensitive structures.1,2 They
require greater precision in tumor localization, treatment
setup, and delivery than conventional techniques. In practice,
inter- and intrafraction organ motion results in an uncertainty
of tumor location. For example, respiratory and prostate tu-
mors can move up to 3 cm over the course of routine
radiotherapy.3–9 Research activities on image-guided radia-
tion therapy have emerged recently to improve targeting in
radiation treatment.10 It is essential to track the dynamical
nature of human anatomy or at least the tumor motion in real
time.11

Several methods of obtaining the real-time tumor position
are available, and these can be categorized as being either
indirect �external surrogate based� or direct �fiducial/image�
in nature. In general, indirect tumor location methods, such
as external skin marker tracking or breath monitoring tech-

niques, rely on the correlation between external body param-
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eters and the tumor.5,12 In reality, the relationship between
external parameters and internal organ motion is complex
and a large uncertainty may be present in predicting the tu-
mor location based on external markers. Direct tumor posi-
tion measurement is highly desirable for therapeutic guid-
ance. In the last decade, a number of direct real-time 3D
tumor tracking methods have been implemented, primarily
using fluoroscopy5,11,13 or magnetic field localization.14 Par-
ticularly, the feasibility of using electronic portal imaging
devices �EPID� and stereoscopic x-ray imaging for real-time
tumor tracking has been explored.3,5,6,15–26

A crucial component of an image based tracking system is
the ability to successfully identify and track user-specified
image-based features at a near real-time speed. The detection
algorithm must also be able to segment markers from ana-
tomic structures and simultaneously track multiple markers
without confusing one marker for another. Generally, an in-
tensity based fiducial marker detection algorithm tends to fail
when the marker is in the vicinity of high contrast structures
such as bone. This can be avoided by using template match-
ing, as demonstrated by Shirato et al., for the tracking of a

single spherical gold marker using multiple kV fluoroscopic

3554…/3554/11/$23.00 © 2008 Am. Assoc. Phys. Med.
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imaging systems.25 Tang et al. have further extended tem-
plate matching by developing a cylindrical marker detection
algorithm that takes into account the different possible pro-
jections of the marker based on its orientation and length on
their custom designed stereoscopic kV on-board imaging
systems.27 Because a single in-line x-ray beam is only two
dimensional, the 3D coordinates of the embedded fiducials
are usually obtained by specially designed multiple kV x-ray
sets.3,5,6,25–28

Recently, Wiersma et al. used combined kV and MV im-
aging systems to track the 3D location of a spherical metallic
fiducial.29 This technique has the inherent benefit in that only
one kV source is required for full 3D marker positional in-
formation since the actual MV beam is also used for posi-
tioning. Compared to other stereoscopic systems, which gen-
erally require two or more kV imaging sets, this technique
reduces the radiation dose to the patient and requires mini-
mal modification of the current hardware. In Wiersma’s
work, a freely available third party software program was
used to detect a spherical fiducial, 3 mm in diameter. As of
yet, there have been few works presenting marker-tracking
algorithms that are suitable for tracking internal markers us-
ing MV image data with high success rates because these
images have significantly reduced contrast.18 Further, it is a
more challenging task to robustly detect small cylindrical
fiducials �gold seeds� used clinically, in a realistic setting.
This problem is exacerbated when the incident beam is an
IMRT field instead of an open field, because one or all im-
planted fiducials may be blocked by the MLC at some seg-
ments during IMRT delivery.

In this article, using a new detection algorithm,30 we will
study four clinically relevant issues pertaining to the appli-
cation of tracking fiducials in real time based on simulta-
neous kV and MV imaging:

�1� How fast can a marker move and still be detectable?
Motion will blur the fiducial and hinder tracking it. It is
essential to investigate the maximum moving speed at
which the markers can still be detected by this proce-
dure.

�2� How does the MV beam scattering affect kV imaging? It
has been reported that if MV and kV images are ac-
quired simultaneously, MV beam scattering has signifi-
cant interference with kV imaging while kV beam scat-
tering effect on MV images is minor.31 A quantitative
study is necessary to clarify if simultaneous MV beam
scattering affects the detection of markers on kV images.

�3� Can an algorithm reliably track markers in MV images
with irregular fields? The aperture of MV beam is care-
fully modified by a multiple-leaf collimator �MLC� in
any 3DCRT or IMRT treatment plans. A major challenge
is that one or more markers may be outside of the MV
fields/ images and this requires very high specificity de-
tection, particularly when the MLC is moving. Is this
tracking procedure capable of handling the MLC block-
ing problem?
�4� Is this algorithm fast enough to track markers in nearly
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real time? An analysis speed of 10 Hz is desirable for a
nearly real-time 3D position tracking in order to gate
treatment beam delivery.

II. MATERIALS AND METHOD

II.A. Hardware setup and computer calculation

All experiments were performed on a Varian Trilogy™
�Varian Medical System, Palo Alto, CA� with a MV EPID
and a kV onboard imaging system as shown in Fig. 1. The
onboard imaging system is located perpendicular to the treat-
ment MV beam and consists of a kV x-ray tube together with
an aSi flat panel imager. Effective pixel sizes of the kV and
MV detectors were 0.388 and 0.392 mm, respectively. Both
detectors had a resolution of 1024�768, corresponding to an
effective area of detection of approximately 40 cm�30 cm.
For both MV and kV systems, the default source-to-axis dis-
tances �SADs� and source-to-imager distances �SIDs� were
set to 100 and 150 cm, respectively. Both dual MV energies,
6 and 15 MV, were used in this article. The MV EPID
was capable of capturing images at a speed of
7.5 frames per second �fps� and 7.8 fps for 6 and 15 MV
beams, respectively, while the kV imager had a capturing
speed of 15 fps in the fluoroscopic or continuous imaging
mode.

A sliced pelvic phantom was tested on a motion platform.
Three gold cylindrical fiducial markers were embedded in
the prostate position, each fiducial had a diameter of 1.2 mm
and a length of 3.0 mm. The platform was driven by an
electrical motor and could move linearly with an adjustable
period between 2.0 and 6.0 s and its maximum motion am-
plitude was set to 1.0 cm.

A software program �C language� was developed to ana-
lyze projection images and obtain fiducial positions. All cal-
culations were performed on a Dell Precision 470 worksta-
tion �3.4 GHz Xeon CPU and 4 GB RAM�.

II.B. Fiducial tracking algorithm

Figure 2 illustrates the complete procedure to track mark-
ers on open-field kV or MV images. Major steps are de-

FIG. 1. A picture of the Trilogy with extended MV EPID, kV source, and kV
imager. Room coordinates are illustrated.
scribed in the following subsections.
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• Obtain approximate 3D positions of FMs from planning
CT

The first step was to obtain approximate 3D posi-
tions of fiducials from the planning CT and then convert
them to the treatment coordinates. A simple intensity-
based search for the markers was performed on the
planning CT. Due to the much larger CT numbers of the
metallic markers relative to other anatomical structures,
the markers were easily segmented from the image
background. The displacement vector relating the CT
iso-center to the treatment iso-center was then used to
relocate marker CT coordinates relative to the treatment
iso-center.

• Predict FM locations
The FM locations on projection images could be pre-

dicted by their approximate 3D positions obtained from
prior planning CT images. For any FM having 3D po-
sition �xM ,yM ,zM�, its expected projection location
�u ,v� on either the kV or MV detector was predicted by
the following relationships:32

u = F
cos���xM + sin���yM

R − sin���xM + cos���yM
�1�

v = F
zM

R − sin���xM + cos���yM
, �2�

where � was the Varian gantry angle, R was SAD, and
F was SID. The x axis was in the lateral direction of
patient couch, the y axis was in the anterior-posterior7

direction, the z axis was the superior-interior �SI� direc-
tion, and the origin was the Linac’s iso-center. The co-
ordinates of the imagers �u ,v� were defined on the im-
ager and rotated with the gantry while v axis was
parallel to z axis and u-axis laying the xy plane. Their
origin is at the imager geometric center and their units
are in mm or pixels �converted by effective pixel size�.

FIG. 2. Flow chart of detecting moving markers on open-field kV/MV
images.
The region to search for the fiducial marker was then
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reduced to a small circular region of interest �ROI� cen-
tered on the predicted location. The ROI may be large
or small depending on the range of tumor motion. Typi-
cally, a ROI with a radius of 75 pixels, or about 2 cm
around the object, was found to be adequate for locating
the moving markers in our studies.

For those markers located near each other, overlap-
ping ROIs were combined into one larger ROI group
containing both markers. In the case of multiple mark-
ers existing in the same ROI group, the detected marker
positions in this ROI group were reordered based on the
information from the planning CT results including the
internal distances between markers and the shortest dis-
tances between detected and predicted marker projec-
tions, so that every detected fiducial would be identified
without any confusion.

• Reduce ROIs
Two methods were used to reduce ROIs if possible.

One method was to use the detected FM locations on
the previous image during a continuous imaging course.
Due to the short time interval between acquisitions
��0.1 s� marker movement between consecutive im-
ages was limited so the new FM location should be
close to the prior location. For instance, when the ROI
radius was reduced to 25 pixels, this still covered a re-
gion with a radius of 6.7 mm, which corresponded to
any movement with a speed less than 5 cm /s.

Another method was to use the relative positions
among markers to locate undetected markers under the
rigid body assumption. As long as one or more markers
were detected, other markers’ expected positions were
calculated based on their relative locations to the de-
tected markers by ignoring the internal motion among
markers. The second search was usually performed in
smaller ROIs with lower thresholds in order to detect
markers with a weaker signal.

• Match patterns
FIG. 3. Flow chart of pattern matching algorithm.
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A novel fiducial tracking algorithm �pattern match-
ing algorithm, as summarized in Fig. 3� has been devel-
oped to detect cylindrical fiducial markers on kV and
MV projection images.20,30 A cylindrical marker could
be projected into different shapes depending on its ori-
entation. A filter was applied to find the fiducial orien-
tation at a given pixel. With this filter, we divided the
angular space on a projection plane into eight bins. The
average intensities of every bin adjacent to the given
pixel were compared and the bin with the highest aver-
age intensity was presumed to correspond to the fiducial
orientation. It should be noted that the cylindrical ori-
entation results carried no information for most of the
pixels and it was only valid for pixels on a cylindrical
object.

A cylindrical marker can be projected into different
for the fiducial was determined. The presumed fiducial
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shapes �length and orientation� depending on its orien-
tation and the x-ray beam direction. However, its cross
section, a narrow section perpendicular to the cylindri-
cal orientation, is a unique feature and it only depends
on the fiducial width and cylindrical orientation. For
convenience, the cross-section patterns at all eight cy-
lindrical orientations were precalculated for given
widths. The cross section of every pixel was then
matched with the predetermined cross-section pattern at
the cylindrical orientation of that center pixel. At each
pixel location �u ,v� within ROIs, a comparison was
made between the surrounding pixels ��fu+i,v+j�� and the
pattern ��pi,j�� corresponding to the cylindrical orienta-
tion of that pixel. Two criteria were used to quantify the
matching: The square of the correlation coefficient,
R2 , and the scaling factor or intensity, H ,
u,v u,v
Ru,v
2 =

��i,j��Pattern�fu+i,v+j − fu,v��pi,j − p̄�

���i,j��Pattern�fu+i,v+j − fu,v�2 · ���i,j��Pattern�pi,j − p̄�2
, �3�
Hu,v =
��i,j��Pattern�fu+i,v+j − fu,v��pi,j − p̄�

��i,j��Pattern�pi,j − p̄�2 , �4�

where fu,v is the average intensity of the pattern region
around pixel �u ,v� and p̄ is the average intensity of the
pattern distribution as given by

fu,v =
1

N
�

�i,j��Pattern
fu+i,v+j , �5�

p̄ =
1

N
�

�i,j��Pattern
pi,j , �6�

with N being the total pixel number of the pattern. The
square of the coefficient of correlation or coefficient of
determination for a linear regression is conveniently
called R square or R2. It varied from 0 �no correlation�
to 1 �perfect correlation�. The scaling factor, H, indi-
cated the relative intensity of the object compared to the
background. In an ideal case, the image was scaled
from the pattern after a background shift, fu+i,v+j

=k ·pi,j+b, where k and b were constants, and the pat-
tern matching result would be Ru,v

2 =1 and Hu,v=k.
After the R2 and H values were calculated for every

pixel in the ROIs, they were screened based on pre-
defined thresholds. For pixels that passed the threshold,
adjacent pixels were examined, and an overall length
would be rejected if its overall length was longer than a
predefined maximum length.

• Calculate 3D coordinates from orthogonal dual
projections

The nearly real-time 3D positions of fiducial markers
were calculated from FM projections on two orthogonal
imagers. Every marker �xM ,yM ,zM� had two projec-
tions: �uMV,vMV� on MV imager and �ukV,vkV� on kV
imager. The Trilogy might have a different SID and
SAD, �FMV,RMV� and �FkV,RkV�, for the MV and kV
imaging systems. Because the Trilogy kV imaging sys-
tem always had a gantry angle of 90° larger than the
MV imaging system, it is convenient to use the MV
gantry angle to represent the Trilogy’s rotation status.
At a MV gantry angle of �, the fiducial marker’s coor-
dinates could be calculated from Eqs. �1� and �2�:

� = uMV
FkVRMV + RkVukV

FMVFkV + uMVukV
, �7�

� = ukV
FMVRkV − RMVuMV

FMVFkV + uMVukV
, �8�

xFM = cos��� · � − sin��� · � , �9�

yFM = sin��� · � + cos��� · � , �10�

zFM =
1	RMV + �

vMV +
RkV − �

vkV
 . �11�

2 FMV FkV
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II.C. Experiments

• Speed of moving FMs
The motion of fiducials would blur images and im-

pede tracking. The maximum detectable moving speed
is an important factor of this detection procedure. We
tracked fiducial markers implanted in a phantom, which
moved at various speeds, on open-field kV and MV
images. The maximum linear speed can be calculated
by Eq. �12�

speed =
2�A

T
, �12�

where A was the motion amplitude and it was 10.0 mm
in this study and T was the motion period.

Detection efficiency has been defined as the ratio
between total number of detected fiducials and total
number of fiducials in all images.

• Test the effects of MV scattering on kV imaging
During simultaneous MV and kV imaging, scattering

of the MV beam would significantly diminish kV imag-
ing quality, but the diminished kV image might still be
good enough to track fiducial markers. In general, the
quality of kV images was inversely proportional to MV
beam size and directly proportional to kV SID. In this
study, the kV images were analyzed by varying the MV
field size from the maximum of 26�20 cm2 �open
field� to 10�10 cm2 and increasing the SID from
150.0 to 181.8 cm. Since the typical human abdomen
has different thickness in lateral �LAT� and anterior-
posterior directions and MV and kV beams are in or-
thogonal directions, the scattering effects on both AP
and LAT directions were tested here.

• Tracking fiducials with the presence of a MLC
In order to track fiducials during a treatment course,

two phantom verification plans for 3DCRT and IMRT
treatments from real patients were prepared on an
Eclipse �Varian Medical System, Palo Alto, CA�. The
3DCRT plan contains four fields: AP, PA, and two LAT
fields. The step and shoot IMRT treatment plan included
seven fields and 74 segments in total. All MV and kV
images were acquired simultaneously during the deliv-
ery of the treatment plans. The pelvic phantom was
placed on the motion platform and both plans were de-
livered multiple times at different motion cycle periods.

Figure 4 shows the flow chart to track markers when
the MLC was moving �i.e., for an IMRT plan�. An iden-
tical tracking method was applied for kV images as de-
scribed in Sec. II B. The kV results were then used to
help locate fiducials on MV images as shown in Fig. 4.
Compared to tracking markers on open-field images,
there was an additional step to screen and define the
MLC field after MV images were acquired. An intensity
threshold was computed from the minimum and maxi-
mum intensity of the whole image and then used for
segmenting the MV field from the MLC blocked area
by a simple intensity based screening process. The im-

age was also linearly normalized for consistent analysis
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across a series of projections. For convenience, the
maximum intensity was normalized to 1000 while the
minimum intensity was normalized to 0.

When using the treatment MV beam for in-line im-
aging, a potential difficulty is that the fiducials may be
partially or completely blocked by the MLC at certain
segments. There are five sources of information can
help in this situation. First, the coordinates of any fidu-
cial from the orthogonal kV imaging are always avail-
able. This piece of information is very valuable in esti-
mating the position of this fiducial on MV imager
because the kV projection result indicates that the fidu-
cial locates on a kV x-ray trace from the kV source to
the kV projection. Its possible projection on MV imager
must be on the projection of this kV x-ray trace. Coor-
dinates of kV and MV projections of the same fiducial
on the common axis, the v axis, are close to each other.
More details are presented in the Appendix. Second,
fiducial kinetics obtained at the previous time point can
be utilized by a prediction algorithm to facilitate esti-
mation of marker position as discussed in the subsection
II B. Fiducial tracking algorithm, Reduce ROIs.
Third, the detected fiducials’ positions could be helpful
to locate other blocked fiducials based on their relative
positions as discussed in the subsection II B. Fiducial
tracking algorithm, Reduce ROIs. Fourth, the MLC
leaf positions are always available from the EPID im-
ages, which can serve as a useful landmark for fiducial
position estimation because the fiducials should be ei-
ther detected or in the MLC leaf blocked area. Finally,
the 3D movement of the markers captured by the pre-
treatment 4D CBCT and simulation 4D CT is also avail-
able for positional prediction. For example, an elliptic
ROI may be used for a known tumor- motion direction
instead of a circular ROI. This will reduce the size of
possible MV projection locations in certain directions.

FIG. 4. Flow chart of detecting moving markers on IMRT kV/MV images.
Furthermore, it would reduce the length of 1D possible
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MV projection locations predicted by orthogonal kV
imaging results.

III. RESULTS

• An Example of fiducial tracking
Figure 5 illustrates a difficult fiducial tracking case

on a lateral MV image. The ROIs for three fiducials
were predicted by the planning CT results and high-
lighted in Fig. 5�a�, in which the dash rectangle dis-
played a region including all ROIs. After pattern match-
ing was performed on every pixel in the ROIs, intensity
and R2 results were obtained as shown in Figs. 5�b� and
5�c�, respectively. The intensity and R2 thresholds were
determined based on the maximum values of that ROI
group and predefined minimum values. After threshold
screening, only one feature was qualified as a fiducial
�enclosed by a solid circle in Fig. 5�d�� while another
feature was rejected because its length was too long.

The second search then followed. The positions of
undetected markers were closely estimated by the rela-
tive shifts among markers as enclosed by the small
dashed circles in Figs. 5�b� and 5�c�. After the thresh-
olds were set at lower values, all markers were success-
fully detected.

• Speed limit for detecting moving fiducials
MV and kV image series were analyzed with the

motion platform moving at different periods. Figure
6�a� illustrates the projection locations of one marker
when the motion platform was moving at an amplitude
of 10.0 mm with a period of 4 s. The traces were fit to
sine waves shown in the Fig. 6�a�. The fitting results
indicated that the motion amplitudes for both axes were
3.38 and 9.49 mm, respectively. This means the total
amplitude is 10.07 mm �=�3.382+9.492�, which is very
close to the nominal amplitude �10.0 mm�. Figure 6�b�
illustrates the difference between measured projections
and fitting results and the variations are less than
0.8 mm.

FIG. 5. Typical fiducial tracking. �a� Projection image in which the ROIs
were highlighted. �b� Intensity results of pattern matching in the dash rect-
angle region of �a�. �c� R2 results of pattern matching in the dash rectangle
region of �a�. �d� Qualified features after the primary search.
Images of the moving phantom were analyzed to test
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the detection efficiency for moving fiducials. In total,
877 kV and 456 MV images on both lateral �90° gantry
angle� and AP directions were acquired and analyzed
for the motion study. It is always easier to detect mark-
ers on the AP images than on the LAT images, partially
because of the increased scattering at the LAT direction.
All markers in kV images and AP MV images �either
6 MV or 15 MV energy� were successfully detected
�detection efficiency of 100%�. For the difficult cases,
detection efficiencies on LAT MV images are illustrated
in Fig. 7. A detection efficiency of better than 95% is
achieved for both MV energies when the motion period
is 4 s or longer, which correlates to a maximum linear
speed of 1.6 cm /s or slower.

(a)

(b)

FIG. 6. Marker Detecting Accuracy. �a� Measured the projections against
fitting results. �b� Differences between measured the projections against fit-
ting results.

FIG. 7. Detection efficiencies of moving markers on LAT MV images of

dual energies.



3560 Mao et al.: Fiducial tracking by simultaneous kV and MV imaging 3560
• Effects of MV beam scattering on kV imaging
Usually scattering of the simultaneous MV and kV

beams can cause concern for degrading the quality of
the kV image. Fortunately, here only the fiducial mark-
ers are of interest and our analysis is capable of suffer-
ing a certain degree of scattering. The kV SID was ex-
tended further to reduce the scattering from MV beams;
842 kV images were acquired and analyzed while vary-
ing the SID and MV field size; the detection efficiency
results are summarized in Table I. As expected, either a
smaller MV field or a larger SID leads to better detec-
tion. It was found that the markers in kV images could
be successfully analyzed even with the scattering from a
common treatment MV field �10�10 cm or less�. In
addition, when our 3DCRT and IMRT plans were deliv-
ered, more than 5000 kV images were acquired and
analyzed and all markers were successfully detected
with a detection efficiency of 100%. This guarantees
that kV imaging is always applicable for tracking fidu-
cials during treatment.

• Tracking FMs in the presence of a MLC
The IMRT plan was delivered once without phantom

motion and once with a motion period of 4.0 s. All MV
and kV images were acquired and analyzed. Special
attention was paid on treatment segments with fiducials

FIG. 8. Detect fiducials during an IMRT treatment. �a� Orthogonal kV im-
age. �b�–�i� MV images for every segment. Detected fiducials were enclosed
in square boxes. Ovals or circles in the MLC blocked region indicate the
predicted fiducial projections and the horizontal line indicate the predicted

TABLE I. Summary of the kV detection efficiencies affected by MV field s
respectively.

kV SID �cm� 181.8

MV direction AP L

MV field size �cm2� 10�10 100% 1
15�15 100% 1
26�20 100% 7
fiducial projections based on orthogonal kV imaging results.

Medical Physics, Vol. 35, No. 8, August 2008
partially or completely blocked by the MLC. Figure 8
illustrates fiducial tracking on the MV field at a gantry
angle of 235° with the static phantom. The fiducial co-
ordinates obtained from orthogonal kV images were
used to help locate projections on MV images �as
shown in Fig. 8�a��. The possible MV projection might
not be exactly horizontal due to the divergence of the
kV x-ray trace �as discussed in the Appendix�. As long
as a fiducial was detected at any segment �Figs.
8�c�–8�i��, the blocked fiducials could be estimated very
closely by fiducial relative positions �circles in the MLC
blocked area� and common axis kV coordinates �solid
lines�. The estimated position was limited on a horizon-
tal line with a length corresponding internal deforma-
tion up to �5 mm. It is still possible that all fiducials
are outside of the MV field because of small IMRT
segments as shown in Fig. 8�b�. In this case, the pos-
sible positions could be estimated as elliptic ROIs by
3D planning CT data and available 4D CT results. Their
long and short axes correspond to possible motion of
�2 cm and �1 cm in two directions, respectively. The
orthogonal kV imaging results limit the estimation to
horizontal lines with a length corresponding motion up
to �1 cm.

The 3DCRT plan was delivered three times with the
motion period varied at 2.0, 3.0, and 4.0 s. All MV and
kV images were acquired and analyzed. Figure 9 dis-
plays the simultaneous MV and kV images when the
phantom was moving. Most of the markers were suc-

nd kV SID. Two efficiencies present MV field at AP and LAT directions,

166.7 150.0

AP LAT AP LAT

100% 100% 100% 100%
100% 100% 100% 4%
61% 13% 6% 1%

FIG. 9. Simultaneous MV and kV images with a MV gantry angle of 180°
ize a

AT

00%
00%
6%
and a motion period of 4 s.
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cessfully detected as enclosed in solid rectangles.
Nearly real-time 3D positions of fiducial markers were
calculated at all fields based on Eqs. �7�–�11�. After
synchronizing the results from different fields, it was
found that results from different fields were within
�0.8 mm of their average positions. Figure 10 illus-
trates 3D coordinates of one moving marker in every
field with a period of 4 s.

It should be noted that the presence of a MLC does
not affect the detection efficiency dependence on mo-
tion speed and all fiducial markers on every kV image
were successfully detected.

• Performance of analysis software
Special attention was paid on the analysis software

programming. It is essential to compute the location of
a marker quickly so to be able to track the markers at a
speed of 10 fps or higher. Most of the calculation time

(a)

(b)

(c)

FIG. 10. Three-dimensional coordinates of one marker during the treatment.
Results from four fields were synchronized for comparison purpose; �a� x
coordinates, �b� y coordinates, �c� z coordinates.
was spent on the pattern matching, including determin-
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ing orientation and calculating intensity and R2. A com-
plete search on 1024�768 pixels image costs about
1 s. The searching region of three markers with a radius
of 75 pixels reduces the calculation time by an order of
magnitude. The average search time for three markers
was 0.08 s per frame.

Basically, kV and MV images could be analyzed in-
dependently. It is generally much easier to track mark-
ers on kV images than on MV images not only because
kV images have better contrast but also because fidu-
cials are always visible in kV images. However, this
does not mean that double the calculation time is
needed for simultaneous kV and MV image analysis
because the kV tracking results might be used to reduce
MV ROIs as shown in Fig. 4 in addition to the other
two methods to reduce ROIs. This process significantly
reduces the size of ROIs on MV images and further
reduces the computation time. It is found that 0.1 s
analysis time per kV/MV pair is achievable on our cur-
rent single CPU architecture. Reduced computation
time is expected if parallel computation is implemented
on a multiple-core processor.

IV. DISCUSSION

The four studies presented in this article pave the way to
track 3D positions of multiple moving fiducial markers dur-
ing treatment in nearly real time. We demonstrate that our
algorithm is capable of tracking fast moving fiducial markers
by simultaneous kV and treatment MV imaging. Further-
more, the analysis speed is fast enough to report nearly real-
time 3D positions of the markers. It is also worthwhile to
mention that this procedure does not need any assumed mo-
tion model. Although all motion experiments were per-
formed on a periodic moving platform, the algorithm does
not take this periodicity into consideration, meaning these
results should just as easily apply to nonperiodic motion.
This is also why the term nearly real-time 3D position was
used instead of 4D position because the terminology of 4D
usually refers to a periodic motion particularly when it is
associated with 4D CT. This procedure detects any regular,
irregular, or sudden motion as long as the maximum speed is
not very fast.

We can track marker motion up to a period of 2 s in kV
images, not only because of much higher contrast of kV
images than MV images, but also because of its higher cap-
ture speed �15 fps�. Currently, the acquisition speed of the
MV imaging is less than 8 fps, which means that the marker
may move about 2 mm ��7.5 pixels on imager� at a speed of
1.6 cm /s during one acquisition �marker width �5 pixels�.
The blurring induced by motion and small size of the marker
make it difficult to track fiducials on MV images, particularly
those with low image quality. It should also be noted that
better hardware will improve performance, e.g., quicker MV

image acquisition.
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This method is suitable for tracking any tumor motion as
long as fiducial markers or surgical clips are available. It is
not limited to a certain type of site although the studies were
performed on a pelvic phantom.

The proposed procedure will be an economic solution to
nearly real-time tracking of tumor motion since more and
more linear accelerators are coming equipped with an on-
board kV imaging system. This procedure does not need any
extra expensive equipment such as multiple kV imaging sets.

Another advantage of this procedure over stereoscopic kV
tracking systems is that using the treatment beam as part of
tracking reduces extra dose to the patient. Although kV im-
aging dose is still a concern, we would like to emphasize that
the patient dose from a single kV imaging set here is 50%
less than that from stereoscopic kV imaging sets. In this
study, we used the typical kV CBCT imaging parameters
�125 kV, 80 ms, and 25 mA�. It has been reported that the
dose to the soft tissue for such a CBCT scan �with 630 im-
ages� is �5 cGy.33 Since an acquisition speed of 7.5 fps
is sufficient, the kV dose is about 3.6 cGy /Min
�5 cGy /630*�7.5 /s�=0.06 cGy /s�. A typical IMRT treat-
ment has a beam on time of about 2 min for a 200 cGy dose
delivery to the target. This implies that the kV imaging dose
is about 7.2 cGy. However, this represents the worst case
scenario where the kV beam is on throughout the IMRT
beam delivery process. In reality, it is not necessary to keep
the kV imaging system on all the time. The kV imaging may
be switched off during the step mode of IMRT delivery. In
addition, the kV field size can be reduced according to the
fiducial motion range. All these strategies may further reduce
the kV imaging dose.

The proposed hybrid MV/kV imaging technique is readily
applicable to facilitate conventional 3D radiation therapy by
providing real-time information of the implanted fiducials.
When using IMRT MV beam for in-line imaging, a potential
difficulty is that the fiducials may be partially or completely
blocked by the MLC leaves at a certain segment�s�. There
are four sources of information that help to estimate the 3D
coordinates of the MLC-blocked fiducial in this situation.
First, the coordinates of the fiducial in the plane perpendicu-
lar to the kV beam are still available from kV imaging. This
piece of information is very valuable because it significantly
reduces the dimensionality of the problem. Second, the fidu-
cial kinetics attained by the kV/MV system at earlier time
when the marker�s� are not blocked can be utilized to adap-
tively predict the “missing” coordinate of the marker in com-
bination with the kV information. Third, the MLC leaf posi-
tions are always available from the EPID images, which can
serve as a useful landmark for fiducial position estimation.
Finally, the 3D movement of the markers captured by the
pretreatment CBCT and planning CT is also available as
a priori knowledge for better positional estimation. The de-
velopment of such a multiple input single output adaptive
prediction algorithm is still in progress. Because there is only
one coordinate that needs to be estimated for a short interval
of time, we foresee no major difficulty in accomplishing an

accurate positional estimation. This remains true in a rare
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situation when all the fiducials are blocked by a MLC seg-
ment. For certain types of tumors that deform little during
the treatment process �e.g., the prostate�, the positions of
unblocked fiducials can be employed as landmarks in allo-
cating the MLC-blocked fiducial�s�.

During our 3DCRT verification plan delivery, at least two
of three fiducials were visible in every field even when the
phantom was on a motion platform. All fiducials were visible
in 95% of the segments. During the delivery of the verifica-
tion IMRT plan, at least one fiducial was visible in about
75% of the segments. This percentage is highly dependent on
the case and the treatment planning system. To increase the
visible time of a fiducial, it is possible to add one or more
imaging segments �i.e., a segmented field with small monitor
unit for the purpose of imaging the fiducials� to the treatment
IMRT leaf sequences to facilitate the detection of a fiducial
at a certain point of IMRT delivery. Another avenue of re-
search is to take the fiducial information into consideration
during the IMRT inverse planning process. With the devel-
opment of segment-based dose optimization methods,34,35 it
should be feasible to ensure the visibility of at least one
fiducial during the inverse planning process. Of course, the
addition of this type of constraint in inverse planning may
compromise the achievable dose distribution. But it is argu-
able that the trade-off will likely be minimal because, after
all, the fiducials are all inside the tumor target volume and
represent high dose points. We are currently actively study-
ing this issue and the results will be reported elsewhere.

V. CONCLUSION

The four studies presented in this article pave the way to
track nearly real-time 3D positions of multiple moving fidu-
cial markers during treatment. It is demonstrated that this
proposed process is capable of tracking fast moving fiducial
markers �up to 1.6 cm /s� by analyzing simultaneous kV and
treatment MV images. The analysis speed is as fast as 10 fps
and can report nearly real-time 3D positions of markers with
submillimeter accuracy.
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APPENDIX

Any fiducial projects on kV imager at P, �ukV,vkV�. This
fiducial must be on the line of KP �as shown in Fig. 11�:

�x = RkV − � · FkV

y = � · ukV

z = � · vkV

 �A1�

While � is arbitrary, FkV and RkV are the source-imager dis-
tance �SID� and the source-axis distance �SAD� of kV sys-

tem, respectively.
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This fiducial projects on MV imager on plane MKP �as
shown in Fig. 11�,

x + b · �y + RMV� + c · z = 0, �A2�

while b and c are constants and RMV is the SAD of MV
system. Input Eq. �A1� to Eq. �A2�, we have

�RkV − � · FkV� + b · � · ukV + b · RMV + c · � · vkV = 0

or

RkV + b · RMV + � · �− FkV + b · ukV + c · vkV� = 0. �A3�

Since � is arbitrary, we get

b = −
RkV

RMV
�A4�

and

− FkV + b · ukV + c · vkV = 0,

or

c =
FkVRMV + RkVukV

RMVvkV
. �A5�

The projection on MV imager �B, �uMV,vMV�� lies on a line
in the MV imager plane v=FMV-RMV, so that the projection
locations of A and B have a relationship:

vMV

vkV
=

FMVRkV + RMVuMV

FkVRMV + RkVukV

or

�FkVRMV + RkVukV� · vMV − RMVvkVuMV = FMVRkVvkV.

�A6�

Typically, both MV and kV systems have a SAD of
100 cm and a SID of 150 cm, approximately,

vMV

vkV
� 1 +

ukV − uMV

FMV
.

FIG. 11. Schematic diagram of relationship between kV and MV projections
of the same fiducial.
For a small target, whose fiducials are within a region with a
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radius of 2 cm, �vMV /vkV� is usually very close to unity
within �4%, i.e., vMV and vkV are close to each other.
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For intensity modulated radiation treatment �IMRT� dose reconstruction, multileaf collimator
�MLC� log files have been shown applicable for deriving delivered fluence maps. However, MLC
log files are dependent on the accuracy of leaf calibration and only available from one linear
accelerator manufacturer. This paper presents a proof of feasibility and principles in �1� using an
amorphous silicon electronic portal imaging device �aSi-EPID� to capture the MLC segments dur-
ing an IMRT delivery and �2� reconstituting a leaf sequence �LS� file based on the leaf end positions
calculated from the MLC segments and their associated fractional monitor units. These EPID-
measured LS files are then used to derive delivered fluence maps for dose reconstruction. The
developed approach was tested on a pelvic phantom treated with a typical prostate IMRT plan. The
delivered fluence maps, which were derived from the EPID-measured LS files, showed slight
differences in the intensity levels compared with the corresponding planned ones. The dose distri-
bution calculated with the delivered fluence maps showed a discernible difference in the high dose
region when compared to that calculated with the planned fluence maps. The maximum dose in the
former distribution was also 2.5% less than that in the latter one. The EPID-measured LS file can
serve the same purpose as a MLC log files does for the derivation of the delivered fluence map and
yet is independent of the leaf calibration. The approach also allows users who do not have access
to MLC log files to probe the actual IMRT delivery and translate the information gained for dose
reconstruction in adaptive radiation therapy. © 2008 American Association of Physicists in Medi-
cine. �DOI: 10.1118/1.2990782�
Key words: EPID, leaf sequence file, IMRT, dose reconstruction
I. INTRODUCTION

An advantage of the fractionation scheme in radiation treat-
ment is that it offers room for adaptive radiation therapy
�ART�. ART is a radiation treatment strategy of which the
subsequent fractional delivery can be adaptively modified
based on a closed-loop control framework using systematic
feedback of geometric and dosimetric information.1–3 The
ultimate goal of ART is to maintain adequate target coverage
with a desired dose and ensure doses received by normal
tissue are within tolerance at the conclusion of treatment.
The adaptive strategy comes into play at different levels of
complexity depending on the techniques and resources avail-
able. It ranges from the most accessible form of adapting
treatment margins based on daily portal images4 to the most
sophisticated one of reoptimization or replanning of treat-
ment plans.1,2 Common to all these strategies is the execution
of dose reconstruction at some stage during the ART process.
Through this, the dose deposited to a patient in a particular
fraction can be correlated or mapped to a reference set of
computed tomography, ideally by deformable registration,
contributing to an accumulated dose delivered so far, which
is a key parameter for the feedback mechanism in the ART
framework.

However, in most intensity modulated radiation treat-
ments �IMRTs� employing ART strategies, the dose recon-

struction is tacitly based on an assumption that the delivery
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of fluence maps is as planned.5–7 This assumption might not
be necessarily valid. For instance, in IMRT using step-and-
shoot mode, the expected delivery of fluence maps might not
be realized due to intrinsic errors associated with the multi-
leaf collimator �MLC� kinematics and beam control commu-
nication resulting in overshoot, undershoot segmental moni-
tor units, dropped segments, and beam delivery during leaf
motion.8–10 In order to incorporate these errors in the dose
reconstruction, Lee et al.11 and Litzenberg et al.10 have dem-
onstrated a pragmatic approach of using MLC log files to
reconstruct the IMRT dose actually delivered. This is based
on the fact that the MLC log files have been validated to
faithfully reflect the actual delivery process of MLC-based
IMRT.12,13 Because the MLC log file is only available from
one commercial linear accelerator �linac� manufacturer
�Varian Medical Systems, Palo Alto, CA�, users with linacs
from other manufacturers are deprived of this straightfor-
ward approach to reconstruct the delivered IMRT dose. Fur-
thermore, the leaf position data recorded in a MLC log file is
taken from the same encoders used to position the leaves,
making the reported position dependent on the leaf position
calibration and by no means an absolute measure of the leaf
position. Any systematic error introduced in the MLC cali-
bration might lead to actual leaf positions different from the
expected ones, resulting in dose errors.14

In order to circumvent this dependence and provide a uni-

versal approach of probing the actual delivery of a fluence
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map, we propose using an amorphous silicon electronic por-
tal imaging device �aSi-EPID� to capture every segment of
the fluence map during the treatment. For each captured seg-
ment, the leaf positions for each pair of leaves are found by
an edge detection algorithm; the fractional monitor unit
�fMU� associated with this particular segment is also
sampled. After all the segments have been analyzed, a leaf
sequence �LS� file is reconstituted using the segmental leaf
positions and their associated fMU based on the sequence the
segments are delivered. The EPID-measured LS files can
then be loaded to the treatment planning system �TPS� to
derive the delivered fluence maps and reconstruct the deliv-
ered IMRT dose. aSi-EPIDs are geometrically and function-
ally stable, giving undistorted images of high resolution and
contrast.15,16 The proposed approach is based on the fact that
the use of the aSi-EPID in measuring leaf end positions to a
high degree of accuracy has been proven, leading to its wide-
spread applications in MLC quality assurance,17,18 leaf
calibrations,19,20 and leaf motion tracking.14,21

The objective of this work is twofold: �1� To present a
proof of feasibility and principles in reconstituting an EPID-
measured LS file which serves the same purpose for deriving
the delivered fluence map as a MLC log file does and �2� to
demonstrate the dose reconstruction essential for adaptive
radiation therapy using the delivered fluence maps literally
calculated from the MLC segments captured by an EPID
during an IMRT delivery.

II. METHODS AND MATERIALS

II.A. Description of the MLC and EPID

All experiments were done on a Trilogy linac �Varian
Medical Systems, Palo Alto, CA� equipped with a Millen-
nium 120-leaf MLC and kilovoltage/megavoltage EPIDs.
The Millennium 120-leaf MLC consists of two banks of 60
leaves. The leaf widths for the central 40 leaf pairs and the
outer 10 leaf pairs are 0.5 and 1.0 cm, respectively. The
leaves can travel a maximum of 16.5 cm across the beam
central axis, and the maximum leaf span between the two
leaves on the same carriage is 14.5 cm. All measurements
are referred to the isocentric plane. The leaf calibration pro-
cedure recommended by Graves et al.22 was performed to
ensure that the MLC indicated field edge positions agreed
with the radiation field edges to within 0.3 mm before the
experiments.23

The megavoltage �MV� EPID �Varian aS1000 flat panel
detector� was used to acquire images for the experiments.
The EPID is mounted on retractable arms attached to the
gantry. It has a detector area of 40�30 cm2 with a matrix of
1024 by 768 pixels, resulting in a physical pixel size of
0.392 mm. The EPID consists of: �1� A 1.0-mm-thick copper
plate for build-up, �2� a phosphor screen of gadolinium ox-
ysulphide doped with terbium �Kodak Lanex Fast Screen� to
convert incident radiation to visible photons, �3� a pixel array
implanted on an amorphous silicon substratum where each
pixel is made up of a photodiode and thin film transistor to

convert the light photons to electric charges, and �4� elec-
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tronics for readout. The electrical signals are digitized by a
14 bit analog-to-digital converter and processed into image
data.

II.B. Geometric status of the EPID

Baker et al.19 and Parent et al.14 reported that a systematic
tilt of the EPIDs was observed in their studies and indicated
that it was likely to occur for all different EPIDs; Clarke and
Budgell20 have also demonstrated the effect of the gantry
angle on the EPID sag. Therefore, it is expected that the
imaging geometry for the EPID at different gantry angles
might deviate from an ideal configuration that we use as the
basis for the measurement of the leaf end position. We need
to establish the geometric status of the EPID before we can
accurately measure the leaf end position from an EPID im-
age. Recently, our group has developed a geometric quality
assurance phantom and an automated analysis program �gQA
tool� to study the geometric integrity of the on-board
imager.24 This gQA tool was used in this work to study the
changes in the overall imaging geometry of the EPID, in-
cluding the source-to-imager distance �SID�, the EPID cen-
ter, and the tilt of the EPID for every 10° of a full rotation of
the gantry. Based on the geometric information provided by
the gQA tool, the maximum discrepancies for the SID, EPID
center offset in either direction, and tilt were found to be
2.7 mm, 2.2 mm, and 1.4°, respectively. Positional correc-
tions were incorporated into the measurement of the leaf end
position.

II.C. Measurement of the leaf end position

The coordinate systems used to describe the imaging ge-

FIG. 1. Coordinate systems describing the imaging geometry of the EPID.
�a� Isocentric plane �x ,y� and gantry angle � as viewed from the couch end.
�b� EPID �� ,�� plane as viewed in the beam’s eye view. �c� EPID’s �-axis
tilt � as viewed from the couch end. �d� EPID’s �-axis tilt � as viewed from
the side. SAD: Source-to-axis distance; SID: Source-to-imager distance.
ometry of the EPID are shown in Fig. 1. The �x ,y� plane
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denotes the isocentric plane with the origin at the isocenter
�Fig. 1�a��. The �� ,�� plane pertains to the EPID with the
origin O at the center of the EPID �Fig. 1�b��. Both the �x ,y�
and �� ,�� planes rotate with the gantry angle �. The �� and
�� axes are defined for a tilted EPID; the angles � and �
represent the tilt of the �� and �� axes, respectively �Figs.
1�c� and 1�d��.

Suppose a leaf and P �assumed to be a point� is projected
to A on the EPID plane �� ,�� �Fig. 2�a��. The projection of A
on the � and � axes are A� and A�, respectively. The dis-
tances of A� and A� are at �1 and �1 from O, respectively.
Now consider a vertical plane passing through the x-ray
source �S�, isocenter �I�, and the point A� �Fig. 2�b��, and if
we assume the imager is in perfect horizontal alignment; the
position of the leaf end on the x axis of the isocentric plane
can be calculated.

From similar triangles SIC and SOA�,

x1 = �1 �
SAD

SID
. �1�

Similarly,

y1 = �1 �
SAD

SID
. �2�

Now assume the imager is tilted to an angle �, the leaf end is

FIG. 2. Schematic diagrams showing the projection of a leaf end P on the EP
calculation of the leaf end position on the isocentric plane �b�. SAD: Sourc
projected to a point B on the tilted EPID instead of A on the
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horizontal EPID. The projection of B on the � axis is B�,
which is at a distance of �1� from O.

From similar triangles SDB� and SOA�, the position of
the leaf end ��1� on the � axis can be found by

�1 = �1� cos � �
SID

SID − �1� sin �
. �3�

Using Eq. �1�, the corresponding leaf end position on the x
axis �x1� of the isocentric plane is

x1 = �1� cos � �
SAD

SID − �1� sin �
. �4�

And if we further incorporate the EPID offset distance �d���
along the �� axis into Eq. �4�, we have

x1 = ��1� + d���cos � �
SAD

SID − ��1� + d���sin �
. �5�

Without loss of generality, the corresponding leaf end po-
sition on the y axis �y1� of the isocentric plane is

y1 = ��1� + d���cos � �
SAD

SID − ��1� + d���sin �
. �6�

In a perfect imaging geometry where the tilts � and � equal

� ,�� plane �a� and the geometrical relationship of various parameters in the
xis distance; SID: Source-to-imager distance.
ID �
to zero ���=�; ��=��, and there are no offsets of the
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EPID center; Eqs. �5� and �6� reduce to Eqs. �1� and �2�,
respectively.

II.D. Experimental design and software development

A step-and-shoot IMRT field is made up of a number of
segments; each segment is specified by prescribed leaf posi-
tions and a fraction of the total monitor units to be delivered
for this segment. For the experiments, a step-and-shoot
IMRT field with an open segment 10 cm long by 1 cm wide
�“open gap” field� was designed to step through a distance of
10 cm from −5 to 5 cm on the x axis of the isocentric plane.

TABLE I. The mean deviations of the leaves �Banks B and A� for the ten s
deliveries.

Delivery

Mean dev

1 2 3 4

Bank B 1 0.8 0.7 0.7 0
2 0.8 0.7 0.7 0
3 0.8 0.6 0.7 0

Bank A 1 0.8 0.8 0.8 0
1 0.8 0.7 0.8 0
3 0.8 0.7 0.8 0

FIG. 3. Schematic diagram showing the workflow from the acquisition of
Medical Physics, Vol. 35, No. 11, November 2008
Five MUs were assigned to each segment. The leaf motion
was parallel to the � axis of the imager. This IMRT field was
delivered to a pelvic phantom �with a bony pelvis embedded�
with its center aligned to the isocenter at a gantry angle of 0°
�IEC scale�. The 6 MV beam was used at a dose rate of
300 MU /min. The EPID was positioned at a SID of 150 cm
to ensure enough clearance for all gantry angles. During the
IMRT delivery, EPID images were acquired in a cine mode
at a frame rate of 6.7 frames per second �fps� and the acqui-
sition was synchronized with the beam. Each captured frame
was saved as a separate image. There was no user interven-

nts of the open gap field delivered at the gantry angle 0° in three repeated

n of leaves �mm� from expected positions
Segment

5 6 7 8 9 10

0.9 0.7 0.8 0.8 0.9 0.8
0.9 0.8 0.7 0.8 0.9 0.8
0.9 0.7 0.8 0.8 0.9 0.8
1.0 0.8 0.8 0.9 0.9 1.0
1.0 0.9 0.8 1.0 1.0 1.0
1.0 0.9 0.9 1.0 0.9 0.9

MLC segments to the dose reconstruction in the prostate IMRT delivery.
egme

iatio

.8

.8

.8

.8

.8

.8
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tion during the whole acquisition process. In fact, for some
segments with small MUs, only two images were captured.
Since the acquisition was synchronized with the beam deliv-
ery, it was impossible to capture the end of one segment with
the start of the next segment. However, due to the ghosting
of the EPID, we did see occasionally some overlap of a
segment with a very faint residual image from the previous
segment, but this did not pose a problem because our soft-
ware could easily distinguish the two by referring only the
maximum gradients encountered. All EPID images were pro-
cessed with the dark-field and flood-field corrections. The
delivery was repeated three times at this angle and also at
other orthogonal angles of 90°, 180°, and 270° in order to
study the effect of gravity on the measurement of the leaf
position from the EPID images.

A further experiment �“open air gap” experiment� was
performed in exactly the same settings without the pelvic
phantom in the beam in order to see whether the presence of
a phantom in the open gap experiment would compromise
the detection of the leaf end position due to the extra scatter
or bony interface within the captured image.

An in-house program written in MatLab code �Math-
Works, Inc., Natick, MA� was developed to reconstitute the
EPID-measured LS file. The program first identifies different
segments from a series of EPID images captured from the
IMRT field by performing morphologic comparison. The
same images of a segment are grouped together; the first and
last images are taken as the starting and ending shapes for
that particular segment. For each segment image, the posi-
tions of the leaf ends are searched near the penumbral re-
gions by a maximum gradient edge detection algorithm in a
scanline fashion for the pixel rows. The maximum gradient
in intensity in the penumbral region of a portal image has
been confirmed to correspond to the 50% intensity level25,26

that depicts the dosimetric leaf edge.27 The pixel location
�column number, row number� of the leaf end found is spa-
tially converted and projected back to the isocentric plane
with the positional corrections using Eqs. �5� and �6�. Only
the pixel rows that correspond to the central one-third of the
leaf are calculated to avoid the influence of the interleaf

28

TABLE II. The mean deviations of the leaves �Banks B and A� for the ten s
angles.

Gantry �deg�

Mean d

1 2 3

Bank B 0 0.8 0.7 0.7
90 0.4 0.4 0.5

180 0.3 0.5 0.5
270 0.8 0.7 0.7

Bank A 0 0.8 0.8 0.8
90 0.4 0.4 0.5

180 0.4 0.5 0.6
270 0.8 0.7 0.8
transmission; the final leaf end position is defined as an
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average of the positions of the leaf ends found from the set of
pixel rows that belong to the same leaf.19,28,29 The leaf posi-
tions of each pair of MLC leaves for each segment image are
then coupled with the fMU associated with that particular
segment by referring to the synchronized beam on signal and
cumulative MU sampled from the beam control circuitry and
MLC workstation, respectively.25,30 After all the segments in
one delivered field have been analyzed, an EPID-measured
LS file is reconstituted in a format readable by the TPS using
the segmental leaf positions and fMU values. The EPID-
measured LS file, which reflects the actual delivery, is then
used to derive the delivered fluence map for dose reconstruc-
tion.

The measurement of fMU is independent of the frame rate
used. The measurement is from the MLC control workstation
and console electronics cabinet, whereas the frame rate is an
acquisition parameter used in the portal vision. The EPID is
only used to capture the leaf position in a segment; the cor-
responding fMU associated with a particular segment is sup-
plied by the MLC workstation through the coupling of the
beam holdoff signal. Since the IMRT delivery is in the step-
and-shoot mode and the image acquisition is synchronized
with the beam pulses, by referring to the beam holdoff �beam
on and off interval�, we can associate the cumulative MU
sampled from the console electronics cabinet with a particu-
lar segment �Fig. 3�. In the cine mode, the portal imager
actually “waits” for the “beam on” signal to start acquiring
the images at 6.7 fps; once the beam is held off during the
movement of the leaves from one segment to another, the
portal imager will stop acquiring. When the leaves reach
their intended positions �within the tolerance� in the next
segment, the beam will be activated again and so be the
portal imager. This is exactly what we rely on to couple the
fMU with a particular segment. All the required data are
readily available if one has access to the appropriate ports of
the MLC workstation and console electronics cabinet with
the help of engineering personnel.

The efficacy of the developed software in measuring the
leaf end position was assessed by comparing the measured

nts of the open gap field delivered at the four principal orthogonal gantry

on of leaves �mm� from expected positions
Segment

5 6 7 8 9 10

0.9 0.7 0.8 0.8 0.9 0.8
0.7 0.5 0.5 0.6 0.5 0.6
0.6 0.6 0.6 0.7 0.7 0.6
0.9 0.7 0.8 0.8 0.8 0.8
1.0 0.8 0.8 0.9 0.9 1.0
0.7 0.5 0.5 0.5 0.6 0.4
0.6 0.6 0.7 0.6 0.7 0.7
0.8 0.7 0.8 0.7 0.8 0.8
egme

eviati

4

0.8
0.5
0.7
1.0
0.8
0.5
0.7
0.8
and expected leaf end positions from the open gap field ex-



5024 Lee, Mao, and Xing: EPID-measured leaf sequence files for IMRT dose reconstruction 5024
periments. The differences in the leaf end positions calcu-
lated from the open gap and open air gap experiments were
also studied.

II.E. Dose reconstruction

A typical prostate step-and-shoot IMRT plan with seven
coplanar fields was copied from a patient case and applied to
a pelvic phantom. The treatment was delivered to the pelvic
phantom as in a real treatment on a Trilogy linac using the
6 MV photon beam at a dose rate of 300 MU /min. EPID
images were acquired during the entire delivery as described
previously. For each delivered field, there were about 9–13
segments depending on the modulation of the fluence map,
and there were about 4–6 EPID images captured for each
individual segment, making a total of about 40–80 EPID
images for each delivered field. A typical prostate IMRT
would result in about 450 EPID images. These images were
discarded once the analysis was done to save computer
space. The EPID images were analyzed by the developed
software, and the reconstituted LS files were loaded back to

FIG. 4. A series of 13 MLC segments captured by the EPID for th
the ECLIPSE TPS �Varian Medical Systems, Palo Alto, CA� to

Medical Physics, Vol. 35, No. 11, November 2008
derive the delivered fluence maps. The delivered and planned
fluence maps were compared. Dose reconstruction was then
performed on the pelvic phantom using the delivered fluence
maps. The workflow is shown schematically in Fig. 3. Dose
reconstruction was also performed using the planned fluence
maps. The dose distributions from the two dose reconstruc-
tions on the three orthogonal planes through the isocenter
and the corresponding dose volume histograms �DVHs� were
compared. Note that the plan was not optimized for the pel-
vic phantom, it is merely used to show the difference in dose
reconstruction from using the delivered against planned flu-
ence maps.

III. RESULTS

III.A. Open gap and open air gap field experiments

For each MLC segment in the open gap field, the mean
deviation ��� of the leaves �leaf m to leaf n� forming the gap

ivered field at the gantry angle 0° for the prostate IMRT delivery.
e del
on each bank from their expected positions is defined as
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� =��i=m
n �xi − xi,expected�2

n − m + 1
, �7�

where xi and xi,expected are the measured and expected leaf
end positions of the ith leaf, respectively.

The mean deviations of the leaves for the ten segments
�Banks B and A� delivered at the gantry angle 0° were about
0.6–1.0 mm and were reproducible for the three repeated
measurements �Table I�. The mean deviations of the leaves
for the ten segments �Banks B and A� delivered at the four
principal orthogonal gantry angles were of the same order of
magnitude �Table II�. However, we noticed that while the
mean deviations for the gantry angle 270° were similar to
that at the gantry angle 0°, the mean deviations for the gantry
angles of 90° and 180° were found to be smaller
��0.3–0.7 mm�. Similar results were found for the open air
gap experiment; data were not shown to avoid redundancy.
Concerning these results, we did not find any discernible
difference in the leaf end positions whether the phantom was

FIG. 5. A series of leaf end positions fo
present or not.
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III.B. Prostate IMRT delivery: MLC segments captured
by EPID

Figure 4 shows a series of 13 segments �only the first
image of each segment is shown� captured by the EPID for
the delivered field at the gantry angle 0° in the prostate
IMRT delivery. The corresponding leaf end positions calcu-
lated by the developed software for each individual segment
are shown in Fig. 5. The calculated leaf end positions were
well within 1.0 mm of their expected positions.

III.C. Derivation of fluence maps and dose
reconstruction

The delivered fluence maps derived from the EPID-
measured LS files for the seven IMRT fields are shown in
Fig. 6�b�; there were slight differences �arrows� in the inten-
sity levels when compared to the corresponding planned flu-
ence maps from the original plan �Fig. 6�a��. Fluence maps
directly reconstructed from the MLC log files are also dis-

individual MLC segment from Fig. 4.
played in Fig. 6�c� for comparison. It was found that the
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fluence maps derived from the EPID-measured LS files
could faithfully depict those reconstructed from the MLC log
files.

The dose reconstruction using the delivered fluence maps
showed no discernible difference for all the isodose lines
except the one for the 105% when compared to the expected
dose distribution �Fig. 7�. The volumes pertaining to a dose
level of 105% or above were 12 and 27 cm3 for the delivered
and expected dose distributions, respectively. The maximum
dose in the delivered dose distribution was 2.5% lower than
that in the expected dose distribution. The DVHs of the tar-
gets from the two dose reconstructions essentially over-
lapped with each other except at the high dose regions,
which are consistent with the difference seen in the dose
distributions.

IV. DISCUSSION

We have shown the feasibility in reconstituting an EPID-
measured LS file and using it to derive the delivered fluence
map for dose reconstruction. The approach is equivalent to
using the MLC log files for dose reconstruction11,13 and yet
avoids the dependency of the recorded leaf positions on the
leaf calibration. The algorithm of detecting the leaf end po-
sition is, in principle, independent of the EPID used. The

FIG. 6. �a� Planned fluence maps. �b� Delivered fluence maps from EPID-m
planned and delivered fluence maps are highlighted by the arrows. No disc
reconstructed from the MLC log files �c�.
principle of obtaining the dose information can easily be
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adopted for linacs of other vendors provided that the console
electronics cabinet has an interface to assess the beam hold-
off signal and cumulative MU.

At the outset, our main concern was the influence of EPID
sag and tilt at different gantry angles on the measurement of
the leaf end position. Clark and Budgell20 and Woo et al.30

have solved this problem by calibration techniques. Using
the developed gQA tool, we were able to quantify the EPID
sag and tilt and incorporate this information in the calcula-
tion of the leaf end positions.24 The use of the present ap-
proach is limited by the projected field size on the EPID,
which is 20�26 cm2 at the isocentric plane.

From the results of the open gap field experiments, we
found that the mean deviation of the leaves was about
0.6–1.0 mm, which was expected of a MLC-based IMRT
delivery28,31 taking into account that �1� a tolerance of
1.5 mm in the leaf position was allowed during the actual
delivery, �2� the associated image noise somewhat compro-
mised the accurate measurement of the leaf end at the pen-
umbral region, and �3� the slight effect of leaf sagging at
various gantry angles.20 The projected pixel size at the iso-
centric plane is 0.26 mm, which means that the mean devia-
tion was about 4 pixels. We found that the mean deviations
of the leaves at gantry angles of 90° and 180° ��0.6 mm�

red leaf sequence files. The differences in the intensity levels between the
e difference is seen between the delivered fluence maps and those directly
easu
ernibl
were in general smaller than that at the gantry angles 0° and
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270°, and there was no discernible difference in the mean
deviations for the two different banks when the gantry was
horizontally placed �gantry angles of 90° and 270°�. Under
the present experimental setup, the data we acquired were
insufficient to explain this phenomenon; one possible expla-
nation could be that the routine leaf calibration is done at the
gantry angle 0° and it might deviate from the ideal scenario
at other gantry angles. Moreover, a smaller mean deviation
does not necessarily mean it is more accurate in the leaf
position at these gantry angles; it simply means the condition
of the leaf positioning was different from that at gantry

FIG. 7. �a� Delivered dose distribution calculated with fluence maps derived f
with planned fluence maps. The differences in the dose distribution �105
orthogonal planes are highlighted by the arrows. �c� The DVHs of the targe
the dose level beyond 105%.
angles of 0° and 180°.
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This work is designed to capture the segments in real time
with a patient in the beam during the actual delivery. The
predeposited condition is that a patient is always present; in
fact, the presence of the patient �or the phantom� does not
compromise the detection of the leaf ends in our algorithm
using the maximum gradient search. The edge detection al-
gorithm is applicable in open fields or fields with patient
anatomy. The main reason being the poor image contrast in
the MV energy range; even at the bone–soft tissue interface,
the gradient is much smaller than at the penumbral region
where there is a maximum transition from a region of back-

PID-measured leaf sequence files. �b� Expected dose distribution calculated
vel� between the delivered and expected dose distributions for the three
m the two dose reconstructions essentially overlapped each other except at
rom E
% le
ts fro
ground noise to an irradiated region. The poor contrast also
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explains why the bony details are not seen in the EPID im-
ages. An EPID image is shown in Fig. 8 to demonstrate the
poor contrast and the magnitude of the order of the gradient
encountered at the field edge and within the field where there
was actually some bony anatomy.

In the comparison of the delivered fluence maps with the
planned ones, the differences in the intensity levels seen
were attributable to the combined effect of leaf deviations in
each of the contributing segments and the inherent fMU
redistribution;8,13 the dosimetric impact of these differences
was reflected in the dose reconstruction using the delivered
fluence maps. The differences in the 105% isodose level and
the maximum dose between the delivered and expected dose
distributions indicate that a need for employing the delivered
rather than planned fluence maps for dose reconstruction in
ART is warranted.

Unfortunately, the present technique does not work for
dynamic delivery �sliding window�. Since we rely on the
beam holdoff signal while the leaves are stepping across to
determine the fMU association with each segment, we have
not yet figured out how we can associate a fMU with an
ever-changing segment in the sliding window delivery.

One might argue that dose reconstruction should be ac-
complished by in vivo exit portal dosimetry,32,33 but the tech-
nique is still in its development and impeded by some con-
founding issues such as dosimetric nonlinearities of the
aSi-EPID17,34 that require tedious calibration and correction35

32

FIG. 8. �a� Due to the poor image contrast in MV energy range, the bony s
gradients encountered at the leaf ends overwhelm all other gradients that w
and the correction of scatter from the patient. Our approach
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is developed along the line of using MLC log files for dose
reconstruction and based on a well-proven superiority of aSi-
EPID in spatial determination of the leaf end position;14,19–21

it is straightforward and easy to implement at a clinic. In
addition, the proposed approach is equally well suited for
IMRT dose verification and quality assurance purposes.

V. CONCLUSIONS

This paper presented a proof of the feasibility and prin-
ciples in reconstituting a leaf sequence file that reflects the
actual delivery of an IMRT based on the MLC segments
captured by an EPID. This EPID-measured LS file can serve
the same purpose as a MLC log file does for the derivation of
the delivered fluence map and is independent of the leaf cali-
bration. The approach also allows users who do not have
access to MLC log files to probe the actual IMRT delivery
and translate the information gained for dose reconstruction
in ART.
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Abstract

Currently, there are two types of treatment planning algorithms for intensity
modulated radiation therapy (IMRT). The beamlet-based algorithm generates
beamlet intensity maps with high complexity, resulting in large numbers of
segments in the delivery after a leaf-sequencing algorithm is applied. The
segment-based direct aperture optimization (DAO) algorithm includes the
physical constraints of the deliverable apertures in the calculation, and achieves
a conformal dose distribution using a small number of segments. However,
the number of segments is pre-fixed in most of the DAO approaches, and the
typical random search scheme in the optimization is computationally intensive.
A regularization-based algorithm is proposed to overcome the drawbacks of
the DAO method. Instead of smoothing the beamlet intensity maps as in many
existing methods, we include a total-variation term in the optimization objective
function to reduce the number of signal levels of the beam intensity maps.
An aperture rectification algorithm is then applied to generate a significantly
reduced number of deliverable apertures. As compared to the DAO algorithm,
our method has an efficient form of quadratic optimization, with an additional
advantage of optimizing field-specific numbers of segments based on the
modulation complexity. The proposed approach is evaluated using two clinical
cases. Under the condition that the clinical acceptance criteria of the treatment
plan are satisfied, for the prostate patient, the total number of segments for
five fields is reduced from 61 using the Eclipse planning system to 35 using
the proposed algorithm; for the head and neck patient, the total number of
segments for seven fields is reduced from 107 to 28. The head and neck result
is also compared to that using an equal number of four segments for each field.
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The comparison shows that using field-specific numbers of segments achieves
a much improved dose distribution.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Traditional inverse planning algorithms for step-and-shoot IMRT divide the beam’s eye view
(BEV) of the planning target volume (PTV) into small beamlets (Ezzell et al 2003, Xing
et al 2005). The beamlet intensities are first optimized, and a leaf-sequencing algorithm
is then applied on the resultant beam intensity map to generate a set of deliverable beam
segments (also called apertures) (Bortfeld et al 1994, Xia and Verhey 1998, Kamath et al
2004, Saw et al 2001, Kuterdem and Cho 2001, Ma et al 1999). For a fast calculation,
the optimization usually has a convex objective function and is typically solved by linear or
quadratic programming. Since the physical constraints of the multileaf collimator (MLC) are
not included in the optimization, these algorithms usually result in a sub-optimal treatment
plan with a large number of beam segments. To reduce the field complexity and therefore
the number of beam segments, many algorithms have been proposed in the literature using
smoothing techniques (Alber and Nsslin 2000, Ma 2002, Spirou et al 2001, Webb et al 1998,
Sun and Xia 2004, Xiao et al 2004). Typical examples use an additional term of sum of
derivative squares (Alber and Nsslin 2000, Matuszak et al 2007, Spirou et al 2001), which are
often referred to as quadratic smoothing or regularization in the theory of convex optimization.
Since these algorithms smooth the sharp edges of the intensity field as well, the optimized beam
intensity is not piecewise constant and still cannot be delivered using a very small number of
segments. Another category of optimization algorithms are direct aperture optimization (DAO)
methods which have been proposed to eliminate the need for leaf sequencing and include the
MLC hardware constraints in the optimization (Shepard et al 2002, Michalski et al 2004,
Cotrutz and Xing 2003, van Asselen et al 2006, Bedford and Webb 2007, Bergman et al 2006,
Mestrovic et al 2007). However, because the delivered dose depends on the aperture shapes
nonlinearly and the optimization problem is non-convex, random search algorithms, such as
simulated annealing, are commonly employed. The computation is intensive and requires
tuning of multiple algorithm parameters in the searching and cooling schedules. The issue
is exacerbated in advanced applications such as 4D and adaptive therapy treatment planning.
Another disadvantage of most of the DAO methods is that the number of segments for each
field needs to be determined before the calculation, which reduces the degree of freedom
of the decision variable space and compromises the optimality of the final solution. Some
sophisticated methods have been proposed to find an optimal set of apertures using floating
numbers of segments in the optimization (Romeijn et al 2005).

In this work, we propose an efficient inverse planning algorithm which significantly
reduces the total number of segments without degrading the conformity of the delivered dose
distribution. This algorithm is also able to optimize the number of segments for each field
based on the modulation complexity. Instead of directly applying the physical constraints
of the apertures, we include a total-variation regularization in the least square optimization
to enforce the computed field intensity maps close to be deliverable using a small number
of segments. An aperture rectification algorithm is then applied on the intermediate field
intensity maps to generate actual intensity maps. The proposed algorithm requires a simple
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adaptation of the traditional beamlet-based optimization. Different from other regularization-
based methods using smoothing techniques, our method uses the total-variation regularization
to reduce the field complexity as well as to encourage a piecewise constant solution (Rudin
et al 1992). As a result, the number of optimized beam segments is much smaller than that
obtained using smoothing methods.

2. Method

2.1. Formulation of the problem

The goal of the inverse treatment planning of radiation therapy is to optimize the treatment
beam apertures and weights such that the delivered dose on the patient best matches the
prescribed dose. The delivered dose distribution on the patient, d, has a linear relationship
with the intensity of the beamlets, x

d = Ax, (1)

where the 3D dose distribution, d, is vectorized, and the beamlet intensity x is a 1D vector
that consists of rowwise concatenations of beamlet intensities for all fields. Each column of
matrix A is a beamlet kernel, corresponding to the dose distribution achieved by one beamlet
with unit intensity. The beamlet kernels are pre-computed based on the CT image of the
patient, the treatment machine settings and the beam geometry. In this work, we used the
voxel-based Monte Carlo algorithm (VMC) as our dose calculation engine (Kawrakow et al
1996, Kawrakow 1997). The gantry geometry and field angles were based on the typical field
setup of the Varian Linac treatment machine. Although matrix A typically has a large size, it
is sparse and reduction of computation cost and memory usage is possible (Cho and Phillips
2001, Thieke et al 2002).

If the sum of the square errors of the delivered dose relative to the the prescribed dose is
used as the optimization objective function, the treatment planning problem can be expressed
as

minimize ∑
i

λi(Aix − di)
T (Aix − di) (2)

subject to

x � 0

x is achievable using apertures (aperture constraint).

where the index i denotes different structures; λi is the relative importance factor (Xing et al
1999, Breedveld et al 2006, Bortfeld 1999, Webb et al 1998, Oelfke and Bortfeld 1999); each
column of matrix Ai is the beamlet kernel corresponding to the ith structure, and di is the
prescribed dose. Note that we use the same form of objective functions for both the target and
the critical structures. A low prescribed dose is used for the critical structures. The aperture
constraint stems from the physical constraints of the MLC. Specifically, it requires that for
each segment, the nonzero beamlets have the same intensity and they are connected in the
direction of MLC leaf pairs.
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Table 1. Variable glossary.

A(Ai) Matrix that relates the beamlet intensity to delivered dose
d(di) Delivered dose
N Total number of beamlets, N = NuNvNf

Nf Number of fields
Nt Total number of segments (apertures)
Nu Number of MLC leaf positions for each leaf
Nv Number of MLC leaf pairs per field
x Beamlet intensity, the decision variable in the optimization
λi Importance factor associated with the ith structure
β Penalty weight associated with the term of total variation

The main variables used in this paper are summarized in table 1 for readers’ reference.

2.2. Treatment planning using total-variation regularization

The formulation of the treatment planning problem described above is commonly used in the
literature. However, the optimization is not readily implementable. A mathematical expression
is still needed for the aperture constraint. Unfortunately, this constraint is neither linear nor
quadratic, resulting in a complicated optimization problem. In the conventional treatment
planning, the aperture constraint is ignored, and the problem is reduced to a beamlet-based
optimization, which can be easily solved as a linear least square problem. In a second step,
a leaf-sequencing algorithm is carried out to find the best matched segments for the optimal
beamlet intensities. In the DAO algorithms, the aperture constraint is enforced in the choice
of the decision variables x in every step of the search process. Due to the nonlinearity of the
constraint, a complicated search scheme, such as simulated annealing, is typically used.

In this work, a regularization-based algorithm is proposed to enforce the aperture
constraint in the optimization. Instead of smoothing the beamlet intensity maps as in many
existing methods, we include a total-variation term in the optimization objective function to
encourage a piecewise constant solution and therefore to reduce the number of signal levels
of the beamlet intensity maps. The optimization problem is still solved using quadratic
programming. The resulting optimized beamlet intensity has sharp spatial transitions. An
aperture rectification algorithm is then applied on the optimized beamlet intensity maps to
derive a small number of deliverable apertures. Although the aperture rectification algorithm
functions similarly to the conventional leaf-sequencing algorithms, it is derived differently
with considerations of the unique features of the optimized intensity maps using total-variation
regularization.

2.2.1. Beamlet intensity optimization using total-variation regularization. A piecewise
constant fluence map, or a fluence map with a small number of signal levels is desirable for
reducing the number of segments in the IMRT delivery. The total-variation regularization as
used in many optimization problems is able to force the optimized solution to be piecewise
constant (Block et al 2007, Kolehmainen et al 2006). Inspired by these facts, in our new
optimization algorithm, we include in the objective function an additional term of total variation
(L-1 norm) of the beam intensity x, and the aperture constraint in the optimization problem (2)
is removed. The term of total variation calculates the sum of absolute values of the derivatives,
and the penalties drive the derivatives toward zeros and force the optimized beam intensity to
be close to piecewise constant. We reformulate the optimization problem as
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minimize
N∑

i=1

λi(Aix − di)
T (Aix − di) + β

Nf∑
f =1

Nu∑
u=2

Nv∑
v=2

(|xu,v,f − xu−1,v,f | + |xu,v,f − xu,v−1,f |)

(3)

subject to

x � 0.

In the second term of the objective function, the beamlet intensity x is parameterized by
the variables u, v and f . The variable u (v) is the row (column) index of the beam intensity
for each field and f is the field index. Nu is the total number of possible MLC leaf positions
for each leaf; Nv is the total number of MLC leaf pairs per field; Nf is the number of fields.
For simplicity, we assume that each treatment field has a rectangular shape when it is fully
open, and Nu and Nv do not change for different fields. The parameter β is the penalty
weight associated with the term of total variation. Since the deliverable fluence map has sharp
transitions only in the horizontal and vertical directions, we calculate the term of total variation
as a summation of the absolute values of the one-dimensional derivatives of each beamlet in
the u and v directions, instead of two-dimensional derivatives.

The term of total variation does not appear to be linear or quadratic. However, the
above optimization can be easily reformulated as a quadratic programming problem (see
appendix A). The problem is then efficiently solved using standard quadratic programming.

Although not exactly equivalent, the total-variation regularization in the optimization
implies the aperture constraint on the intensity maps. The resulting optimized intensity maps
are more readily achievable using apertures, at the price of slightly degraded dose distribution
as compared to that of the beamlet-based plan. This tradeoff can be adjusted by using different
values of β. If the number of segments is large (small), the complexity of deliverable intensity
maps can be high (low) and a small (large) β should be used to relax (strengthen) the aperture
constraint. For a given number of segments, too large a β forces the resulting intensity maps
deliverable using a very small number of segments, and the capability of high complexity of
deliverable intensity maps is not fully utilized; if β is too small, the optimization is close to
the conventional beamlet-based method, which requires a number of segments much larger
than the given value. In this work, we choose the value of β empirically based on clinical
data. More discussion on the choice of β is included in the section of results.

2.2.2. Aperture rectification algorithm. The optimization with the total-variation
regularization (3) is not equivalent to the initial optimization problem (2). This is because the
aperture constraint is not equivalent to the constraint of piecewise constant beamlet intensity
maps, not to mention that including the term of total variation in the objective function does
not guarantee the optimized variable to be exactly piecewise constant. A leaf-sequencing
algorithm is needed to modify the optimized result of the beamlet intensity maps to enforce
the aperture constraint. In this paper, based on the fact that the total-variation regularization
greatly reduces the number of signal levels of the optimized intensity maps, we develop a
novel aperture rectification algorithm for the leaf sequencing. The details of the algorithm
along with an implementation example are included in appendix B. Note, however, that our
optimization algorithm using the total-variation regularization does not rely on the proposed
aperture rectification and other existing leaf-sequencing algorithms can be used here as well.
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The aperture rectification algorithm modifies the optimized beamlet intensity. One may
be concerned that the rectification function drives the beamlet intensity away from the optimal
solution, and degrades the performance of the optimization. As shown in the section of results,
with a proper choice of the penalty weight β for the regularization term, the optimized beamlet
intensity is already very close to piecewise constant, and the intensity modification due to the
aperture rectification function is small.

2.3. Evaluation

The proposed algorithm has been tested on a prostate patient and a head and neck patient.
The algorithm was implemented in Matlab, using the MOSEK optimization software package
(http://www.mosek.com). The optimization problem was first reformulated into a standard
quadratic form as shown in appendix A. The standard quadratic optimization routine provided
in MOSEK was then called to solve the problem, using an interior-point optimizer. The
resultant dose distributions were evaluated using clinical acceptance criteria, such as maximum
and mean doses and dose–volume constraints.

For the prostate patient, five fields were used at angles of 35◦, 110◦, 180◦, 250◦ and 325◦,
based on a standard clinical protocol. Each field targeted the center of PTV, and contained
20 by 16 beamlets, with a beamlet size of 5 mm by 5 mm at the source-to-axis distance
(SAD). To save computation in the MC simulation of the dose distribution, the CT data were
downsampled in the dose calculation, and the voxel size was 3.92 mm by 3.92 mm by 2.5 mm.
The rectum, bladder and femoral heads were included as sensitive structures. For a better
comparison, besides the proposed algorithm, two more algorithms were implemented. The
first was a beamlet-based optimization. To show the best possible plan, no leaf-sequencing
algorithm was applied, which resulted in a plan using a total number of 1600 segments (one
segment for each beamlet). The second was an optimization using quadratic smoothing to
reduce the field complexity. To demonstrate the advantage of the proposed method, in our
implementation, we simply changed the absolute values in the second term of the objective
function (3) to squares.

For the head and neck patient, seven fields were used at angles of 20◦, 120◦, 145◦, 180◦,
215◦, 240◦ and 340◦, and each field contained 16 by 20 beamlets. All the other parameters
of the dose calculation were the same as used on the prostate patient. The sensitive structures
included the brainstem, optic chiasm/nerves, optic lens, left parotid, larynx and spinal cord.
The mandible and right parotid were not used because these structures significantly overlapped
with the PTV.

3. Results

3.1. Prostate results

After the dose distribution of each beamlet was calculated using the MC simulation, the
proposed algorithm took about 2 min on a 3 GHz PC for the prostate plan. Figure 1 shows one
example of the optimized beamlet intensity of the second incident field before the aperture
rectification is applied, with no regularization, with the quadratic smoothing and with the total-
variation regularization. The quadratic smoothing reduces the complexity of the intensity map
to some extent, and it also smoothes the sharp edges. The total-variation regularization further
reduces the field complexity by preserving the edges, and the resulting intensity map is close
to a piecewise constant function. This effect is better illustrated in figure 2, which plots the
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Figure 1. Optimized beam intensity maps with no regularization, with the quadratic smoothing
and with the total-variation regularization. The data are from the second field of the prostate study
before the aperture rectification is applied. (a) With no regularization (β = 0 in the objective
function (3)). (b) With the quadratic smoothing. (c) With the total-variation regularization.

histograms of figure 1. For a better illustration, the dominant zero signals of the intensity map
are not used in the histogram calculation.

Figure 3 shows the actual fluence maps obtained using the proposed optimization and
aperture rectification for the prostate patient. The resultant plan using our method has different
levels of modulation for different fields. In this case, the numbers of segments are 5, 6, 11, 10
and 3, for fields 1–5. Using a commercial treatment planning system (Eclipse, Varian Medical
Systems, Palo Alto, CA), the numbers of segments for the fields are 11, 12, 13, 12 and 13,
respectively. Our algorithm reduces the total number of segments from 61 to 35. Figure 4
shows the dose–volume histograms (DVHs) of the PTV for the prostate plan, when different
total numbers of segments (Nt ) are used. The plans are normalized such that 95% of the PTV
volume receives 100% prescribed dose (78 Gy). As Nt increases, PTV coverage improves.
The result using a beamlet-based optimization without delivery constraints is also included
in the plot. Figure 5 shows the DVHs of the PTV and the sensitive structures for Nt = 35
using the beamlet-based method without regularization, using the quadratic smoothing and
using the total-variation regularization. The proposed aperture rectification algorithm is used
in the leaf-sequencing step to achieve the same number of segments in these three approaches.
It is clear that the total-variation regularization achieves a better plan on the conformity of
the PTV dose distribution when a small number of segments is used. Table 2 summarizes the
planning results and compares with the clinical acceptance criteria. All the acceptance criteria
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Figure 2. Histograms of the beam intensities of figure 1. Zero intensity values are not included
in the calculation. (a) With no regularization (β = 0 in the objective function (3)). (b) With the
quadratic smoothing. (c) With the total-variation regularization.

are satisfied. Figure 6 shows the iso-dose distributions, using the beamlet-based optimization
and using the proposed algorithm. It is seen that our algorithm achieves a highly conformal
dose distribution, which is comparable to the optimal result with an extremely large number
of segments.

3.2. Head and neck results

The proposed optimization took about 2.5 min on a 3 GHz PC for the head and neck plan.
The results of treatment planning on the head and neck patient are shown in figures 7, 8 and
9. Table 3 compares the results with the acceptance criteria and indicates that the plan is
clinically acceptable. These results are achieved using numbers of segments, 1, 4, 3, 4, 4, 8
and 4 for fields 1–7. Using the eclipse system, the numbers of segments for different fields
are 17, 16, 13 15, 18, 14 and 14, respectively. Our algorithm reduces the total number of
segments from 107 to 28.

It is important to let the algorithm optimize the number of segments for each field based
on the field-specific modulation complexity. To illustrate this fact, figure 10 compares the
DVH’s of the PTV obtained using two different schemes in choosing the number of segments
for each field. The first scheme uses the proposed algorithm to determine field-specific
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Figure 3. Actual fluence maps for the prostate plan using the proposed algorithm. (a) field 1,
using five segments. (b) field 2, using six segments. (c) field 3, using 11 segments. (d) field 4,
using 10 segments. (e) field 5, using three segments.

numbers of segments. The total number of segments for all fields is set to 28. The second
scheme modifies the proposed algorithm. In selection of the segments, it does not consider
the modulation complexity of each field and uses an equal number of four segments per field
(with the same total number of segments as that in the first scheme). The plans are normalized
such that 95% of the PTV volume receives 100% prescribed dose (66 Gy). It is evident that
the scheme of field-specific number of segments yields a better treatment plan.
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Figure 4. DVH’s of the prostate PTV using the beamlet-based optimization without delivery
constraints and using the proposed algorithm. Note that the total number of segments in the
beamlet-based method is extremely large.
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Figure 5. DVH’s of the prostate plans using the beamlet-based method without regularization
(dashed lines), using the quadratic smoothing (dot-dashed lines), and using the proposed algorithm
(solid lines). All the plans use a total number of 35 segments (Nt = 35).

Figure 11 illustrates the relationship between the algorithm performance and choice of
parameters, Nt and β. Note that only the first term of the objective function in the optimization
(3) as in conventional planning algorithms (2) is used to quantify the algorithm performance.
The result is consistent with the discussion in section 2.2.1. In general, a large Nt results in an
improved dose distribution due to the increased modulation. If Nt is fixed, either a very small
or a very large β value results in degraded algorithm performance. The β value that obtains
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(a) (b)

Figure 6. Dose distributions of the prostate plan. The iso-dose lines correspond to 95%, 65%
and 30% of the prescribed dose (78 Gy). The PTV and the sensitive structures (bladder, rectum
and femoral heads) are patched using different colors. The hotspots are marked using red crosses.
(a) Using the beamlet-based optimization without delivery constraints (Nt = 1600). (b) Using the
proposed algorithm (Nt = 35).

Table 2. Prostate plan objectives and results.

Regions Acceptance criteria Results

PTV %vol > 78 Gy � 95 %vol > 78 Gy = 95.3
Rectum %vol > 40 Gy � 35 %vol > 40 Gy = 31.6

%vol > 65 Gy � 17 %vol > 65 Gy = 9.85
vol > 79.6 Gy � 1cc vol > 79.6 Gy = 0.84cc

Bladder %vol > 40 Gy � 50 %vol > 40 Gy = 22.3
%vol > 65 Gy � 25 %vol > 65 Gy = 7.57

Femoral heads %vol > 45 Gy � 1 %vol > 45 Gy = 0 (left), 0.076 (right)
Body vol > 82.7 Gy � 1cc vol > 82.7 Gy = 0.61cc

%vol > x Gy: percentage of the volume that receives more than x Gy dose.
vol > x Gy: size of the volume that receives more than x Gy dose.

the optimal solution tends to decrease as Nt increases, which indicates that less total-variation
regulation is needed as the achievable field complexity increases. Similar conclusions can be
found in figure 12, which investigates the impact of choice of algorithm parameters on the final
treatment plan by comparing DVHs for different Nt and β values. The plans are normalized
such that 95% of the PTV volume receives 100% prescribed dose (66 Gy). In this head and
neck case, for Nt = 28, the optimal β is around 0.8; for Nt = 84, the value is reduced to
around 0.4.

4. Discussion and conclusions

The proposed algorithm suppresses the dispensable intensity modulation of fluence maps
using total-variation regularization. The number of delivered segments is significantly
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Figure 7. Actual fluence maps for the head and neck plan using the proposed algorithm.
(a) Field 1, using one segment. (b) Field 2, using four segments. (c) Field 3, using three segments.
(d) Field 4, using four segments. (e) Field 5, using four segments. (f) Field 6, using eight segments.
(g) Field 7, using four segments.
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Figure 8. DVHs of the head and neck plan using the proposed algorithm (Nt = 28).

Figure 9. Dose distribution of the head and neck plan. The iso-dose lines correspond to 95%, 65%
and 30% of the prescribed dose (66 Gy). The PTV and the sensitive structures (spinal cord,
parotids) are patched using different colors. The hotspot is marked using a red cross.

reduced without compromising the conformity of the dose distribution. As compared to other
algorithms that also include the aperture constraint in the optimization, such as DAO methods,
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Figure 10. DVHs of the PTV in the head and neck plan using field-specific numbers of segments
and using equal numbers of segments for all fields. A zoom-in plot is provided as an inset.

Table 3. Head and neck plan objectives and results.

Regions Acceptance criteria Results

PTV %vol > 66 Gy � 95 %vol > 66 Gy = 95.0
Brainstem Maximum < 54 Gy Maximum = 46.4 Gy
Larynx Maximum < 70 Gy Maximum = 5.60 Gy

Mean < 26 Gy Mean = 2.42 Gy
Optic chiasm/nerves Maximum < 54 Gy Maximum = 8.90 Gy
Lens Maximum < 12 Gy Maximum = 8.80 Gy
Left parotid Maximum < 70 Gy Maximum = 29.1 Gy

Mean < 26 Gy Mean = 5.80 Gy
Spinal cord Maximum < 45 Gy Maximum = 14.6 Gy
Body Maximum < 75.9 Gy (115%) Maximum= 74.0 Gy (112.0%)

%vol > x Gy: percentage of the volume that receives more than x Gy dose.

our method has an advantage of easy implementation and high computational efficiency. The
implementation of the optimization step requires a simple adaptation of the conventional
algorithm, and it introduces only one additional empirical parameter β. The final form of
the optimization is quadratic and efficient computation is possible using standard software
packages. Furthermore, our algorithm optimizes the individual number of segments for
different fields, based on the complexity of the required modulation. As shown in the result of
the head and neck plan (figure 10), a treatment plan with field-specific numbers of segments
greatly improves the conformity of the dose distribution. In most DAO methods, numbers of
segments for each field need to be specified before the calculation, and they are not included
in the optimization. Therefore, the optimality of the final solution is compromised.

A quadratic objective function is used in this study for the purpose of demonstration.
The proposed total-variation regularization does not require the objective to be quadratic,
and can be easily used in other forms of optimization, such as linear programming (Romeijn
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Figure 11. The value of the objective function (expression (2)) as Nt and β change. Note that all
the axes are plotted in the log scale.
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Figure 12. DVHs of the PTV in the head and neck plan using the proposed algorithm with different
β and Nt values.

et al 2003). The relative weight β associated with the term of total-variation regularization is
critical to the algorithm performance. In this work, we choose the value of β empirically based
on general considerations of the intensity map complexity and the total number of segments.
The optimal β, however, is hard to find analytically, mainly due to the non-convexity of this
problem. If computation time is not an issue, the β value can be further refined adaptively
using iterations, in a similar way as in the optimization of the structure specific importance
factors (Xing et al 1999).

Our algorithm obtains a reduced number of delivered segments by reducing the complexity
of the field intensity maps. The algorithm is distinct from the existing methods which use
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Figure 13. An example of steps 4–6 of the aperture rectification algorithm. Six apertures are
derived from the beamlet intensity map shown in figure 1(c). The top row shows the residual
beam intensity as aperture intensity maps are extracted. For a better illustration, different display
windows are used. The middle row shows the single-level beamlet intensity maps, of which some
maps are not deliverable using apertures. The same display windows are used. The first four
images of the bottom row are apertures generated from undeliverable single-level intensity maps.
Note the second image is discarded due to its low total intensity.

smoothing techniques, such as quadratic smoothing (Alber and Nsslin 2000, Matuszak et al
2007, Spirou et al 2001), to reduce the field complexity. Instead of smoothing the field intensity
maps, we focus on shaping the intensity maps to be piecewise constant such that they can
be delivered using a small number of segments. The optimized intensity maps contain sharp
transitions, which are otherwise smoothed if quadratic smoothing is used. Total-variation
regularization is used in our approach, because the method is able to heuristically find a sparse
solution. In the segment-based treatment planning problem, the deliverable fluence maps
using a small number of segments are sparse representations in the space of all fluence maps if
the MLC constraints are not considered. The advantage of using total-variation regularization
over using quadratic smoothing is demonstrated in the comparisons of clinical results. The
difference between quadratic smoothing and total-variation regularization can also be found
in classic textbooks (Boyd and Vandenberghe 2004), and they have different advantages in
different applications.

In summary, a total-variation based inverse planning method is proposed in this work.
The method uses quadratic optimization with the total-variation regularization, followed by
an aperture rectification. As compared to other existing methods, the proposed algorithm
is derived using different principles and implemented efficiently. The patient studies show
that the proposed algorithm significantly reduces the total number of segments used in the
treatment without compromising the delivered dose distribution.
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Appendix A. Formulation of the optimization as quadratic programming

The first term of the optimization objective function (expression (3)), F1, is rewritten as
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F1 = 1

2
xT Qx + cT x +

N∑
i=1

λid
T
i di (A.1)

where,
∑N

i=1 λid
T
i di is a constant and can be dropped in the objective function, and,

Q = 2
N∑

i=1

λiA
T
i Ai (A.2)

c = −2
N∑

i=1

λiA
T
i di . (A.3)

The second term of expression (3), F2, can be rewritten as

F2 = βeT |Bx|, (A.4)

where e is an all-one vector, with a size of ((Nu − 1)NvNf + Nu(Nv − 1)Nf ) by 1, i.e.,
eT = (1, 1, 1, . . . , 1), e ∈ R((Nu−1)NvNf +Nu(Nv−1)Nf )×1; the operation of the absolute value
is performed on every element of the vector Bx; Multiplication by matrix B calculates the
derivatives of x in the vertical and horizontal directions. Specifically,

B =
[
Bh

Bv

]
, (A.5)

where Bh is used to calculate the derivatives in the u direction

Bh =

⎡
⎢⎢⎢⎣

S1 0
S2

. . .

0 SNvNf

⎤
⎥⎥⎥⎦ . (A.6)

Si are identical, with a size of (Nu − 1) by Nu

Si =

⎡
⎢⎢⎢⎢⎢⎣

−1 1 0 · · · 0 0
0 −1 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 0
0 0 0 · · · −1 1

⎤
⎥⎥⎥⎥⎥⎦ . (A.7)

Bv is used to calculate the derivatives in the v direction

Bv =

⎡
⎢⎢⎢⎣

T1 0
T2

. . .

0 TNf

⎤
⎥⎥⎥⎦ . (A.8)

Ti are identical, with a size of Nu(Nv − 1)-by-NuNv

Ti =

⎡
⎢⎢⎢⎣

−1 0 · · · 1 0 · · · 0
0 −1 · · · 0 1 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · · · · · · · · · · 1

⎤
⎥⎥⎥⎦ . (A.9)

On each row, −1 and 1 are separated by Nu − 1 zeros.
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Define a new variable t as

t = |Bx|. (A.10)

According to equations (A.1) and (A.4), the optimization problem can be reformulated as

minimize

1
2xT Qx + cT x + βeT t (A.11)

subject to

x � 0

|Bx| = t

which is equivalent to

minimize

1
2xT Qx + cT x + βeT t (A.12)

subject to

x � 0

Bx − t � 0

Bx + t � 0.

The optimization problem is now in a form of quadratic programming. Note that for
different optimization software packages, the problem can be reformulated differently for a
better computation performance.

Appendix B. Aperture rectification from the intensity map

To enforce the aperture constraint on the optimized beamlet intensity maps, we first divide
each of the optimized beamlet intensity maps into single-level intensity maps. These maps
are then divided into deliverable apertures. Specifically, the aperture rectification algorithm is
described in the following steps:

Step 1. Calculate the histograms of the beamlet intensity maps (x) obtained from the
optimization with the total-variation regularization (see figure 2(c)).

Step 2. Take out the histogram bins corresponding to zero beamlet intensity values, and then
normalize the rest of bins of each field by the maximum bin value of that field.

Step 3. Sort the histogram bins for all fields in descending order, and select the first Nt bins.

Step 4. For each field, sort the selected n intensity values for that field in descending
order, denote as I1, I2, . . . , In. Initialize a 2D beamlet intensity map y as the optimized
beamlet intensity map for that field obtained from the optimization with the total-variation
regularization. For the index i starting from 1:

Step 4.1. Generate a 2D map m with ones at pixels of y that are larger than Ii+Ii+1
2

(or, In

2 if i = n), and zeros elsewhere.
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Step 4.2. The ith single-level intensity map of the field is (Ii − Ii+1)m (or, Inm if
i = n).

Step 4.3. If i < n, update y by assigning Ii+1 to pixels where m have nonzero
values, update i as i = i + 1.

Step 5. Check whether the obtained single-level intensity maps from step 4 are deliverable
using one aperture. If not, separate the single-level intensity map into multiple apertures.

Step 6. Due to the separation in step 5, we have more than Nt apertures. These apertures are
then sorted according to their total intensities, and the largest Nt apertures are selected as the
final deliverable apertures.

In the above description, we assume the total number of apertures Nt is pre-determined.
Note that the numbers of apertures for different fields can be different and they are optimized
based on the modulation complexity. We also ignore MLC transmission and MLC header
scatter in this study. As in the conventional leaf-sequencing algorithms, these effects can be
readily included (Xing and Li 2000, Yang and Xing 2003).

Figure 13 shows an implementation example of the aperture rectification algorithm using
the second field intensity map of the prostate study (figure 1(c)). The aperture rectification
algorithm first generates single-level beamlet intensity maps for all fields, based on the
histogram data as shown in figure 2(c). These single-level beamlet intensity maps are then
divided into deliverable apertures.
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Abstract: The success of IMRT inverse treatment plans depends greatly upon how well the 

dosimetric goals of different structures within a patient are balanced and prioritized. In most 

plans, the optimal beam intensity profiles are calculated by assigning a uniform importance and 

prescription to all voxels in the target volume and sensitive structures at hand. While a perfectly 

uniform and accurate dose is desired in all structures, this is impossible to achieve in reality and 

many voxels will receive a different dose than their given prescriptions. Different methods have 

been explored by which importance factors can be modified or removed from optimization to 

improve treatment plans. This paper explores an alternative of assigning individual voxel 

prescriptions and modifying them between optimizations in order to produce an improved dose 

distribution. A clinical head and neck case was used to test this method. By correcting voxel 

prescriptions to compensate for the inequalities between the actual and desired doses calculated, 

substantial improvements are obtained for the treatment plan as large dose reductions were 

achieved in almost all of the critical structures present. 
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Introduction: IMRT treatment planners will typically formulate radiation delivery into a linear 

or quadratic optimization problem in order to achieve fluence maps of beamlet intensities that 

will deliver an acceptable dose to all structures. The problem is complicated by the unequal 

importance of different goals; the achievement of the desired dose in the tumor region is often of 

much greater importance than reducing the dose received by critical organs, and different organs 

vary in their dose toleration. The solution in most plans is to multiply the dose distributions for 

each structure by an importance factor, a constant that can either increase or decrease the penalty 

for error between the desired and delivered dose. Through the modification of importance factors, 

one can achieve a treatment plan much more compliant with the given dosimetric goals of a 

patient. However, since patient cases vary greatly, there is not one set of importance factors that 

will produce an optimal treatment plan for everyone. Planners must often go through a tedious 

and time-consuming process of repeatedly changing importance factors and re-optimizing 

beamlet intensities until an acceptable distribution is achieved. This current method leaves much 

to be desired. One of the largest problems is that it considers dose tradeoffs at the structural level 

only. Yet, the voxels within the target volume and critical structures are not equal and can 

oppose each other in terms of their dosimetric goals. As a result, assigning them all equal 

importance and prescriptions can greatly limit the solution space of the optimization. There are a 

number of proposed methods that can be used to take into account this inequality among voxels. 

For instance, as explored by Yang and Xing, one can implement voxel-specific importance 

factors rather than using a single, constant importance factor for a structure as justified by 

dosimetric capacities [1,3]. Others have explored methods by which to eliminate the need for 

importance factors altogether. In this paper, an alternative is explored by which voxels are 

assigned individual prescriptions as opposed to a single prescription for an entire structure. These 



prescriptions are iteratively modified prior to optimization to produce a new solution. Each voxel 

is given a higher or lower prescription based on how well it achieved the desired dose in the 

previous optimization. This method of prescription correction offers advantages over traditional 

IMRT planning in that it forces the solution closer to the optimal dose with greater uniformity in 

a very intuitive manner. For the purpose of demonstration, this approach was implemented with 

the method proposed by Zhu et al. for total-variation regularization [2]. Due to the simplicity of 

the approach, it can easily be added to almost any other treatment planning algorithm. 

Method: We formulate our method as an iterative procedure. Initially, all prescriptions are set to their 

ideal value for both organs and target volume. Next, the optimal beamlet intensities for the given 

parameters are calculated as a quadratic optimization problem. Once the delivered doses are determined, 

the prescriptions are corrected linearly based on deviation from the delivered dose with the ideal 

prescription. Finally, the beamlet intensities are re-optimized with the new prescriptions. This process can 

be repeated until the solution converges. 

For the patient case used, the objective function was reformulated and solved as a quadratic 

optimization problem with the MOSEK optimization software package. The dose distribution produced 

by a series of beamlet intensities is given by the relation  

 

where d is the delivered dose distribution, x is a series of beamlet intensities, and A is a matrix 

that relates beamlet intensities to voxel doses within a given structure. The A matrix is calculated 

based on the CT image of a patient, the beam geometry, and the treatment machine. The objective 

function to be minimized is given by 

 



Where r represents an importance factor and the objective function for each structure  is given by 

 

 represents the calculated dose and  is the prescribed dose for a voxel i. The objective function 

calculates the square of the error between the prescribed and received doses of all voxels in a given 

structure. The prescription corrections are then performed after each optimization. A uniform target 

dose is assigned for each structure and remains unchanged for all iterations, but the actual 

prescriptions for each voxel are assigned a higher or lower dose for the next optimization 

iteration depending on the error between the delivered dose and the target dose. A linear function 

was chosen since higher order functions are likely to overcorrect and produce unstable solutions. 

Each voxel is corrected by the following equation 

     

where i indicates a single voxel in structure ,  is the prescribed dose for iteration n, T is the 

target dose for a given structure, and  is the delivered dose calculated from the last 

optimization. The constant  determines what proportion of the error will be used to correct the 

prescription. Structures with a higher value will better achieve their target dose with a quicker 

rate of correction, usually at the expense of others with lower values. However, setting too large 

a value may result in unstable solutions, which is why it best kept between 0 and 1. To 

implement total-variation regularization, a second term was added to the objective function that 



calculates the horizontal and vertical derivatives of the beamlet intensities for each field. With 

this term, the beamlet intensities are forced into piece-wise constant fluence maps with a small 

number of segments, making the fluence maps easier to deliver.  

A clinical head and neck case was used to test this method of prescription corrections. 

For the planning target volume (PTV), the target dose was set to 66 Gy. The beamlet intensities 

are normalized so that 95% of PTV receives 66 Gy for every dose distribution. All organs at risk 

(OAR) including the tuning structure were assigned target doses of zero. In this study, the 

proportionality constants were set to one for all structures with the exception of the tuning 

structure. Since the tuning structure surrounds the PTV, it was given a smaller constant so that its 

prescription corrections would not negate those of the PTV, yet still prevent greater irradiation to 

surrounding tissue. However, it should be high enough to prevent severe irradiation to 

surrounding tissue.  

Results: The optimization algorithm described was implemented and tested on a head and neck 

case. The dose volume histogram (DVH) for the treatment plan in figure 1 shows substantial 

improvement. While prescription correction resulted in a minor improvement to the PTV, most 

of the critical structures received a dramatic reduction in dose. This can be attributed to the 

tradeoff determined by the importance factors assigned to each structure during optimization. 

Because the PTV’s importance factor is much higher relative to every other structure, it will 

achieve a nearly optimal dose without prescription corrections. However, the OARs can be much 

further from their optimal dose and repeated prescription corrections allow the OARs to be 

forced to a lower dose. Figure 2 shows the isodose distribution with contour lines at 95%, 65%, 

and 30% of the PTV target dose (66 Gy).  The distribution shows that there is a great reduction 

of radiation to the surrounding tissue as well. The right parotid and mandible were not included 



in the DVH of the head and neck case because they overlapped with the PTV. Table 1 shows the 

results based on the criteria used for determining whether a treatment plan is clinically 

acceptable. The PTV and OARs in the corrected case all meet the standard requirements for head 

and neck treatment plans. Due to the large improvements, this method of prescription correction 

can ease the process producing a clinically acceptable treatment plan and may eliminate or 

reduce the need to manually change the importance factors on structures. 
  

 

 

Figure 1: DVH of the head and neck plan. Dashed lines indicate the DVH before prescription 

correction and solid lines show it after. 

 
Table 1: Head and Neck plan results before and after prescription corrections

Regions  Original  Corrected 
PTV  % vol > 66Gy = 97.92  % vol > 66Gy = 98.66 
Brainstem  maximum = 53.69Gy  maximum = 27.19Gy 
Larynx  maximum = 15.94Gy  maximum = 3.26Gy 
  mean = 7.39Gy  mean = 1.73Gy 
Chiasm  maximum = 3.03Gy  maximum = 1.29Gy 



Cord  maximum = 50.23Gy  maximum = 19.24Gy 
Left Parotid  maximum = 33.49Gy  maximum = 28.99Gy 
  mean = 19.2Gy  mean = 5.51Gy 
Left Optic nerve  maximum = 4.4Gy  maximum = 0.93Gy 
Right optic nerve  maximum = 5.25Gy  maximum = 1.54Gy 
Left lens  maximum = 3.34Gy  maximum = 0.47Gy 
Right lens  maximum = 3.99Gy  maximum = 0.83Gy 

 

 

Figure 2: Head and neck plan dose distributions before prescription correction (left) and after 

(right). Hotspots are marked with red crosses. 

 

In our specific implementation of prescription corrections, one of the difficulties 

encountered with the corrections is that they would act against the total-variation regularization 

term in the objective function. Because the penalties for voxels continue increasing after each 

iteration in order to force them to their target doses, the penalties eventually become larger than 

that of the regularization term, forcing them out of their piece-wise constant form and making the 

fluence maps more complex. Thus, after several iterations of corrections, the calculated fluence 

maps may require many more apertures for delivery than initially. In order to overcome this 

problem, the penalty weight for the term of total variation in the objective function must be set to 



a value high enough so that the resulting fluence maps after a given number of iterations will still 

be deliverable with an acceptable number of apertures. For this case, it was set to 50. Figure 3 

illustrates these results and shows how the prescription corrections affect the fluence map when 

the penalty weight is not large enough. Alternatively, one may choose to set the penalty weight 

for regularization to zero until the last iteration of  

 

         0 prescription corrections, β=20          4 prescription corrections, β=20 

 

         0 prescription corrections, β=50          4 prescription corrections, β=50 

Figure 3: The fluence maps of one field before and after prescription corrections with different 

penalty weights for total-variation regularization. 

 



optimization. The advantage of doing this is that it reduces computation time since the objective 

function is much simpler without regularization. However, this tends to result in a slightly lower 

quality DVH as opposed to setting a high, constant penalty weight for all iterations. It should be 

noted that for other treatment plans, some experimentation may be required to determine what 

value the penalty weight should be assigned for a given number of iterations. 

  

Figure 4: DVH of the spinal cord in the head and neck plan for every odd optimization iteration. 

 

These results were obtained after five iterations of optimization (four prescription 

corrections) with total-variation regularization. The running time only depends on the 

optimization algorithm used and however many iterations of prescription corrections one wishes 

to execute. While more iterations typically produce better results, the prescription correction can 

result in significant improvements even after one or two iterations only. However, the solutions 

do begin to converge after a certain number of iterations as shown in figure 4. It has been 



observed that the solution will become unstable after a large number of iterations (for this case, 

about 20), but this should not be a problem since there is no need to perform so many. The great 

improvement prescription corrections produced for the critical organs can most likely be 

attributed to the assignment of negative prescription values. Although no structure can receive a 

negative dose in reality, a negative prescription enables a much greater penalty for any radiation 

OARs are exposed to. While a regularization based optimization algorithm was used for this 

study, the same method of prescription correction can be easily implemented with any other 

algorithm. 

Conclusion: Voxel-based prescription corrections produced significant improvements in the 

treatment plans of the cases studied. Combining this with total-variation regularization, the 

fluence maps achieved can be delivered efficiently with the addition of an aperture rectification 

algorithm while maintaining an acceptable dose distribution. Through this simple method of 

prescription corrections, the desired doses were better achieved in the PTV and most of the 

organs at risk. Due to the simplicity and intuitiveness of this approach, it offers the advantage of 

being easily implemented in most IMRT planning algorithms with only a few lines of code. 

Various improvements could be made to this method. For instance, decaying proportionality 

constants may perhaps be employed in order to give a large, quick correction initially while 

preventing the corrections from becoming unstable. 
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Abstract

In current radiation therapy using Linac machines, dose is delivered using apertures. A small number

of apertures (or beam segments) is desirable for high treatment efficiency as well as accuracy due to

the reduced patient motion. The traditional beamlet-based treatment planning does not include the

non-convex physical constraints of apertures in the optimization, and results in a large number of beam

segments. This number is reduced in segment-based planning algorithms, such as direct aperture op-

timization (DAO) methods. However, most of the DAO methods pre-fix the segment number for each

field and little research has been done in the literature to minimize the segment numbers without much

compromising the dose distribution. Since the actual fluence map is a summation of piece-wise constant

beam segments and it is sparse after taking derivatives, we formulate the planning as a multi-objective

optimization problem and minimize the segment numbers by using compressed sensing to find a sparse

solution. In addition to the objective for dose conformity on the planning target volume and avoidance of

critical structures, a total variation term is included in the optimization as a second objective function. A

Pareto frontier is then calculated, and the achieved dose distributions associated with the Pareto efficient

points are judged using clinical acceptance criteria. The clinically acceptable dose distribution with the

smallest number of segments is chosen as the final solution. The evaluation result using the proposed

method on a prostate patient shows that the number of segments is greatly reduced while a satisfactory

dose distribution is still achieved.

Keywords: radiation therapy, inverse planning, compressed sensing

1 Introduction

The step-and-shoot intensity-modulated radiation therapy (IMRT) uses a series of beam apertures (or seg-

ments) shaped by the multi-leaf collimator (MLC) to deliver patient dose. Currently, there are two major

categories of inverse planning algorithms to optimize the dose distribution such that it closely matches the

1



prescribed dose. The traditional beamlet-based algorithms divide the beam’s eye view (BEV) of the planning

target volume (PTV) into small beamlets [1, 2], and a convex optimization is used to optimize the beamlet

intensities without considering the non-convex physical constraints of beam apertures. For a fast calcula-

tion, a linear or quadratic function is typically used as the objective. A leaf sequencing algorithm is then

applied on the resultant beamlet intensity map to generate a set of deliverable beam segments such that

the summation of these beam segments is approximately equal to the optimized beamlet intensity obtained

from the beamlet-based optimization [3–8]. Since the constraints of beam apertures are not included in the

optimization step, these algorithms usually obtain a large number of segments due to the high complexity

of optimized beamlet intensity maps. To ameliorate this problem, many algorithms have been proposed in

the literature using smoothing techniques to suppress the complexity of the intensity maps [9–14]. Typi-

cal examples use an additional term of sum of derivative squares [9, 11, 15], which are often referred to as

quadratic smoothing or regularization in the theory of convex optimization. Since these algorithms smooth

the sharp edges of the intensity field as well, the optimized beam intensity is not piece-wise constant and still

cannot be delivered using a very small number of segments. Segment-based optimization algorithms, such

as direct aperture optimization (DAO), include naturally the physical constraints of beam apertures in the

optimization [16–22]. The leaf-sequencing step is therefore unnecessary and the achieved number of segments

for a satisfactory dose distribution is less than that using a beamlet-based optimization. The downside of

including non-convex constraints in the optimization, however, is the increased difficulty of finding a global

optimal solution. As a result, random search algorithms, such as simulated annealing, are commonly em-

ployed. The computation is therefore intensive and requires tuning of multiple algorithm parameters in the

searching and cooling schedules. The issue is exacerbated in advanced applications such as 4D and adaptive

therapy treatment planning, where the number of decision variables in the optimization is greatly increased.

Another disadvantage of most of the DAO methods is that the number of segments for each field is not

optimized as a decision variable. Instead, it is determined before the calculation, which compromises the

optimality of the final solution.

In this work, we tackle the problem of efficiently optimizing the number of beam segments in IMRT,

on which little research has been done in the literature. The derivation of the proposed method is based

on the fact that a beamlet intensity map which can be delivered using a small number of segments must

be piece-wise constant and its derivative is sparse. A compressed sensing algorithm is used to enforce

the sparsity of the optimized solution [23, 24], such that the number of beam segments is minimized. To

ensure the achieved dose distribution is not compromised, we add a total-variation term into the traditional

beamlet-based optimization as a second objective function and the problem is solved as a multi-objective

optimization. The Pareto efficient points are calculated, among which the clinically acceptable solution with

the smallest number of beam segments is selected as the final solution. The proposed method is evaluated

2



using a prostate patient study.

2 Method

Table 1: Variable glossary

A(Ai) matrix that relates the beamlet intensity to delivered dose;

d(di) delivered dose;

N total number of beamlets, N = NuNvNf ;

Nf number of fields;

Nt TOTAL number of segments;

Nu number of MLC leaf positions for each leaf;

Nv number of MLC leaves per field;

x beamlet intensity, the decision variable in the optimization;

λi importance factor associated with the i’th structure;

2.1 Beamlet-based optimization

The conventional beamlet-based optimization for inverse treatment planning is based on the linear relation-

ship between he delivered dose distribution on the patient, d, and the intensity of the beamlets, x:

d = Ax (1)

where d is a vectorized dose distribution for a three-dimensional volume, and the beamlet intensity x is a

one-dimensional vector that consists of row-wise concatenations of beamlet intensities for all fields. Each

column of the matrix A is a beamlet kernel, corresponding to the dose distribution achieved by one beamlet

with unit intensity. The beamlet kernels are pre-computed based on the CT image of the patient, the

treatment machine settings and the beam geometry. In this work, we used the Voxel-based Monte Carlo

algorithm (VMC) as our dose calculation engine [25, 26]. The gantry geometry and field angles were based

on the typical field setup of the Varian Linac treatment machine.

For an efficient calculation, a convex function is usually used as an objective function in the optimization.

If we use the L-2 norm of the difference between the delivered dose and the target dose as the objective

function of x (φ1(x)), the treatment planning problem can now be expressed as:

3



(a) An actual fluence map obtained using

Eclipse planning system on a prostate pa-

tient.

(b) After taking the discrete gradient as

defined in equation (3).

Figure 1: Comparison of an actual fluence map before and after taking discrete gradient.

minimize

φ1(x) =
∑

i

λi(Aix− di)T (Aix− di) (2)

subject to:

x º 0

where, the index i denotes different structures; λi is the relative importance factor [12, 27–30]; each column

of the matrix Ai is the beamlet kernel corresponding to the i’th structure, and di is the prescribed dose.

The main variables used in this paper are summarized in Table 1 for readers’ reference.

2.2 Multi-objective optimization including minimization of the segment num-

ber

The above optimization problem (2) does not include dose delivery constraints of treatment machines. In

practice, the radiation dose is delivered using apertures which are shaped by a multi-leaf collimator. Two

constraints are implied. The first is the uniformity constraint, i.e. the intensity map of one beam aperture

is uniform inside the MLC open area and zero elsewhere if MLC transmission and MLC header scatter

can be ignored or compensated for [31, 32]. The second is the connectivity constraint, i.e. the non-zero

intensity areas of one beam aperture are connected in the direction of MLC leaf pairs. As discussed in the

section of introduction, these two constraints are non-convex and not included in the optimization step of the

traditional beamlet-based methods, resulting in a large number of beam segments. The number of segments

is not optimized in most of the segment-based DAO methods either, since this number is typically pre-fixed

before the calculation.

In this paper, we propose an efficient method to optimize the number of segments without compromising

the dose distribution. Our algorithm derivation starts from investigating the feature of an intensity map
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which can be delivered using a small number of beam segments. Such an intensity map can be considered

as a sparse presentation in the space of all deliverable segments, since the total number of possible beam

segments obtained by a MLC is extremely large. Another way of understanding the sparsity feature of a

desired intensity map can be obtained by considering the uniformity constraint. Mathematically, an actual

fluence map is a summation of uniform intensity maps with different shapes. This piece-wise constant

function can be easily “sparsified” by taking derivatives. Define a gradient operator as:

∇u,vx(u, v) = |xu,v − xu−1,v|+ |xu,v − xu,v−1| (3)

Fig. 1(a) shows an actual fluence map obtained from the Eclipse planning system on a prostate patient. The

operator defined in equation (3) is able to sparsify the fluence map, as shown in Fig. 1(b).

The sparsity of the intensity map is well correlated with the corresponding number of segments. The

more sparse the optimized intensity map is, the less segments the leaf-sequencing algorithm derives. To

enforce the sparsity on the optimized solution and therefore to minimize the number of segments, we include

a term of L-1 norm, which is commonly used in compressed sensing algorithms [23,24], as a second objective

function in the beamlet-based optimization. Now the multi-objective optimization problem is reformulated

as below:

minimize 



φ1(x) =
∑

i

λi(Aix− di)T (Aix− di)

φ2(x) =
Nf∑

f=1

Nu∑
u=2

Nv∑
v=2

|∇u,vx(u, v, f)|
(4)

subject to:

x º 0

where the second objective φ2(x) is the L-1 norm of the gradient of the beamlet intensity x as defined in

equation (3). x is parameterized by the variables u, v and f . The variables u (v) is the row (column) index

of the beam intensity for each field and f is the field index. Nu is the total number of possible MLC leaf

positions for each leaf; Nv is the total number of MLC leaves per field; Nf is the number of fields. For

simplicity, we assume that each treatment field has a square shape when it is fully open, and Nu and Nv

do not change for different fields. Note that φ2(x) is actually a total-variation objective function, which is

commonly used in many applications to encourage a piece-wise constant solution [33,34].

2.3 Calculation of Pareto frontier

In order to obtain a final solution of the multi-objective optimization problem (5), we choose to first calculate

the Pareto frontier and then select the solution which satisfies the clinical acceptance criteria with the smallest

5



number of segments. The main reason is that some of the clinical goals are non-convex and difficult to be

included in the optimization as constraints [35], and visual inspections are used to judge whether a certain

plan is clinically acceptable.

The function φ2(x) is not linear or quadratic. For an efficient calculation, we reformulate the optimization

problem (5) into an equivalent form:

minimize 



φ1(x) =
∑

i

λi(Aix− di)T (Aix− di)

φ2(x) = eT t

(5)

subject to:

x º 0

Bx− t ¹ 0

Bx + t º 0

where, e is an all-one vector, with a size of ((Nu − 1)NvNf + Nu(Nv − 1)Nf )-by-1, i.e., eT = (1, 1, 1, ..., 1),

e ∈ R((Nu−1)NvNf +Nu(Nv−1)Nf )×1; the vector t is an intermediate variable with the same size as e; the matrix

B is used to calculate the derivatives of x. Specifically,

B =


 Bh

Bv


 (6)

where, Bh is used to calculate the derivatives in the u direction:

Bh =




C1 0

C2

. . .

0 CNvNf




(7)

Ci’s are identical, with a size of (Nu − 1)-by-Nu:

Ci =




−1 1 0 · · · 0 0

0 −1 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 0

0 0 0 · · · −1 1




(8)
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Figure 2: The Pareto frontier of the multi-objective problem. T1 and T2 are the anchor points.

Bv is used to calculate the derivatives in the v direction:

Bv =




D1 0

D2

. . .

0 DNf




(9)

Di’s are identical, with a size of Nu(Nv − 1)-by-NuNv:

Di =




−1 0 · · · 1 0 · · · 0

0 −1 · · · 0 1 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · · · · · · · · · · 1




(10)

On each row, −1 and 1 are separated by Nu − 1 zeroes.

2.3.1 Calculation of anchor points

In order to obtain the Pareto frontier, we first fix φ2(x) to a small value of s1 and minimize φ1(x) using the

following quadratic optimization to obtain an objective value of p1:

minimize

φ1(x) =
∑

i

λi(Aix− di)T (Aix− di) (11)
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subject to:

x º 0

Bx− t ¹ 0

Bx + t º 0

eT t = s1

Repeat the optimization using a large φ2(x) value of s2, and obtain a minimized φ1(x) value of p2. Thus,

we find two anchor points on the Pareto frontier, T1 and T2, as illustrated in Fig. 2.

2.3.2 Calculation of Pareto efficient points between anchor points

In order to calculate the complete Pareto frontier between the two anchor points, one solution is repeating

the above optimization using different s values uniformly distributed between s1 and s2. This approach,

however, doesn’t achieve uniformly distributed data points on the Pareto frontier, as clear in Fig. 2. A

better method is used in this work [36]. We minimize the values of φ1(x) and φ2(x) along lines perpendicular

to the line connecting T1 and T2. The function values of φ1(x) and φ2(x) corresponding to the optimized x

define a point on the Pareto frontier. Mathematically, the optimization is changed to be:

minimize

φ2(x) = eT t (12)

subject to:

x º 0

Bx− t ¹ 0

Bx + t º 0
∑

i

λi(Aix− di)T (Aix− di) = geT t + h

where the variable g is the slope of the lines perpendicular to the line T1T2, g = s2−s1
p1−p2

; the variable h

is the intercept of these lines. Denote h1 or h2 as the intercept of the line passing through T1 or T2,

h1,2 = p1,2 − gs1,2. The optimization is repeated for different values of h, which are chosen uniformly

between h1 and h2.

Note that the last constraint in the above formulation of optimization defines a non-convex solution set,

which makes the problem challenging. Fortunately, it can be verified that this constraint can be changed to

be convex without affecting the solution. The optimization becomes a linear programming with linear and

quadratic constraints, as shown below:

8



minimize

φ2(x) = eT t (13)

subject to:

x º 0

Bx− t ¹ 0

Bx + t º 0
∑

i

λi(Aix− di)T (Aix− di) ≤ geT t + h

2.4 Leaf sequencing

The proposed method uses compressed sensing to ensure the sparsity of the optimized solution. However, the

obtained beamlet intensity map is not exactly piece-wise constant. Furthermore, the connectivity constraint

due to the MLC hardware is not considered in the algorithm derivation. A leaf sequencing algorithm as in

beamlet optimization is therefore needed to finally generate deliverable beam segments. Our multi-objective

optimization does not post special requirements on the leaf-sequencing step and any existing leaf-sequencing

algorithms can be used in combination with the proposed method.

2.5 Evaluation

The proposed algorithm has been tested on a prostate patient. The algorithm was implemented in Mat-

lab, using the MOSEK optimization software package (http://www.mosek.com). The anchor points of the

Pareto frontier are first calculated using a standard quadratic optimization routine provided in MOSEK

with an interior-point optimizer, according to the problem formulation (11). Other Pareto efficient points

are calculated using a linear programming with linear and quadratic constraints as shown in (13).

Five fields were used at angles of 35, 110, 180, 250 and 325 degrees, based on a standard clinical protocol

for prostate patients. Each field targeted the center of PTV, and contained 20-by-16 beamlets, with a

beamlet size of 5mm-by-5mm at the source-to-axis distance (SAD). To save computation, the CT data were

downsampled in the dose calculation, and the voxel size was 3.92mm-by-3.92mm-by-2.5mm. The rectum,

bladder and femoral heads were included as sensitive structures. All the plans are normalized such that 95%

of the PTV volume receives 100% prescribed dose (78Gy).

3 Results

Fig. 3 shows the calculated Pareto frontier of the prostate plan. The number of segments (Nt) corresponding

to each Pareto efficient point after applying a leaf-sequencing algorithm is marked in the plot. In general,
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Figure 3: The calculated Pareto frontier of the prostate plan. The derived number of segments (Nt) corre-

sponding to each data point is marked in the plot.

a small (large) φ2(x) value achieves a small (large) number of segments, while the dose distribution is

degraded (improved), as indicated by the increase (decrease) of φ1(x) value. However, since the total-

variation objective in our algorithm only implies the uniformity constraint and the connectivity constraint

is enforced by the subsequent leaf sequencing, the above relationship is not exactly monotonic. As shown in

Fig. 3, in some local areas, a larger φ2(x) value achieves a smaller number of segments.

Fig. 4 shows the dose volume histograms (DVH’s) of the prostate plans corresponding to every other

Pareto efficient point on Fig. 3. As the number of segments increases, the plan performance, especially

the avoidance of the organs at risk (OAR’s), improves. The improvement slows down when the number of

segments reaches a certain level. These plans are evaluated using clinical acceptance criteria and the results

are summarized in Table 2. The plan is satisfactory when the segment number is not less than 35, and the

result using 35 segments is chosen as the final solution. Using the Eclipse planning system on the same data,

the total number of segments is 61. Our method significantly reduces the the number of segments without

compromising the clinical performance of the treatment plan. The iso-dose distributions using different

numbers of segments are shown in Fig. 5.

4 Discussion and conclusions

In this paper, an efficient algorithm is proposed to optimize the number of segments without compromising

the dose performance in radiation therapy treatment. The derivation is inspired by the feature of sparsity of

a desired optimal solution. Using compressed sensing, we include a total-variation term as a second objective

function in addition to the traditional objective function in a beamlet-based optimization and reformulate

the planning into a multi-objective optimization problem. A method of calculating the Pareto frontier is

also designed. Pareto optimal solutions are evaluated using clinical acceptance criteria, and the satisfactory
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(a) Nt = 18
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(b) Nt = 23
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(c) Nt = 29
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(d) Nt = 35
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(e) Nt = 45
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(f) Nt = 48

Figure 4: DVH’s for the prostate plan using different numbers of segments.
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(a) Nt = 18 (b) Nt = 23

(c) Nt = 29 (d) Nt = 35

(e) Nt = 45 (f) Nt = 48

Figure 5: Dose distributions of the prostate plan. The iso-dose lines correspond to 95%, 65% and 30% of

the prescribed dose (78Gy). The PTV and the sensitive structures (bladder, rectum and femoral heads) are

patched using different colors. The hotspots are marked using red crosses.
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Table 2: Prostate plan goals and results

Regions Acceptance criteria Nt = 18 Nt = 23 Nt = 29 Nt = 35 Nt = 45 Nt = 48

PTV % vol>78Gy ≥ 95 95.0 95.0 95.0 95.0 95.0 95.0

Rectum % vol>40Gy ≤ 35 56.5 44.3 38.2 33.3 31.0 30.0

% vol>65Gy ≤ 17 13.8 12.9 10.7 9.8 9.7 9.4

vol>79.6Gy ≤ 1cc 0.50cc 1.42cc 1.27cc 0.54cc 0.81 cc 0.87cc

Bladder % vol>40Gy ≤ 50 46.5 38.8 29.1 24.3 21.3 19.1

% vol>65Gy ≤ 25 11.1 9.3 8.1 7.9 7.5 6.9

Femoral heads % vol>45Gy ≤ 1 0.08 0.30 0.20 0.15 0.03 0

Body vol>82.7Gy ≤ 1cc 0.65cc 0.46cc 1.61cc 0.73cc 0.96cc 0.85cc

%vol>xGy: percentage of the volume that receives more than xGy dose.

vol>xGy: size of the volume that receives more than xGy dose.

φ2

φ1

φ2

Optimal solution of minimizing

φ(x) = φ1(x) + βφ2(x)

Pareto frontier

arctan β

Figure 6: The optimal point on the Pareto frontier if the optimization is solved using a regularization based

method.

plan with the smallest number of segment is chosen as the final solution. The algorithm is assessed using

a prostate study. The result shows that the proposed greatly reduces the number of segments without

compromising the clinical performance of the treatment plan.

Calculation of the Pareto frontier is one solution to a multi-objective optimization problem. Other

standard methods can also be used here. For example, we can combine the two objectives and consider

the total-variation term as a regularization term with a user-defined penalty weight of β. The optimization

problem is converted to a quadratic programming. As shown in Fig. 6, the optimal solution obtained using

this method is the Pareto efficient point on the Pareto frontier at which the tangent has a slope of −β. The

multi-objective approach provides a more general solution without introducing the parameter β [35].

The difficulty of optimizing the number of segments in radiation treatment planning arises from the non-

convexity of the physical constraints of apertures. Some researchers have proposed sophisticated methods to
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find an optimal set of apertures, typically using a formulation of non-convex optimization (more references?)

[37]. The computation complexity is increased and a global optimal is not always guaranteed. In our method,

we use compressed sensing to encourage the final solution to satisfy the piece-wise constant constraint of

an actual fluence map which can be delivered using a small number of segments. The optimization is still

convex, and therefore a global optimal solution can always obtained with a high computation efficiency.

The reduction of the number of segments in a radiation therapy treatment has many indications in

clinical practice. First of all, the total treatment time is greatly reduced and therefore the efficiency of the

hospital facilities is increased. Second, the reduced treatment time also reduces the patient motion during

the treatment and the radiation dose can be delivered more accurately. Third,... As such, the proposed

algorithm is very attractive in clinic.
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